
Daline: A Data-driven Power Flow Linearization Toolbox

for Power Systems Research and Education

(User Manual for Daline 1.1.5)

Mengshuo Jia, Wen Yi Chan, and Gabriela Hug

Power Systems Lab, ETH Zürich

June 27, 2024

Power flow linearization is a fundamental technique in power system operations, crucial for both aca-

demic research and industry applications. Despite its importance, many advanced linearization methods,

particularly those driven by data, remain largely inaccessible, neither open-sourced nor integrated into

widely used software platforms. To address this gap, we introduce Daline, an open-source MATLAB

toolbox specifically designed for the power systems community. Daline provides a comprehensive suite of

57 linearization methods, including 53 data-driven techniques and 4 physics-driven approaches. Daline’s

robust capabilities cover a spectrum of functionalities: (1) Data Generation, (2) Data Pollution, (3)

Data Cleaning, (4) Data Normalization, (5) Method Selection, (6) Method Customization, (7) Model

Linearization, (8) Model Evaluation, and (9) Result Visualization. These functionalities enable users to

execute complex tasks with minimal coding effort. This manual serves as an in-depth guide, providing a

gentle introduction for new users and a detailed reference for advanced users, explaining Daline’s features,

functions, parameters, syntax, and practical applications, and all the other related contents. Our vision

is to empower users by saving their valuable time and fostering innovation in power systems analysis

through accessible, state-of-the-art linearization tools.

© 2024. All rights reserved.

ii

Reminder to Users

Copying the code examples from the manual into MATLAB may introduce unwanted spaces, leading to

syntax errors. Please check for suspicious spaces in strings before running the code. The easiest way is

to directly use the code examples in the “examples” folder of the Daline package without copying and

pasting.

Contents

1 Introduction 1

1.1 Background . 1

1.2 License and Terms of Use . 3

1.3 Citing Daline . 4

2 Getting Started 5

2.1 System Requirements . 5

2.2 Installation . 5

2.3 Major Functionalities . 8

2.4 Customization Approaches . 12

2.5 Customizable Parameters . 13

2.6 Daline Examples . 15

3 Data Generating and Processing 16

3.1 Data Generating (daline.generate) . 16

3.1.1 Input . 17

3.1.2 Output . 20

3.1.3 Examples . 21

3.1.4 Remarks . 21

3.2 Data Processing . 22

3.2.1 Check Data Format (Automatic) . 22

3.2.2 Add Data Noise (daline.noise) . 23

3.2.3 Add Data Outliers (daline.outlier) . 24

3.2.4 Filter Data Noise (daline.denoise) . 25

3.2.5 Filter Data Outliers (daline.deoutlier) . 26

3.2.6 Normalize Data (daline.normalize) . 28

iii

CONTENTS iv

3.3 All-in-one Command for Data Generating/Processing (daline.data) 29

4 Model Fitting and Testing 32

4.1 All-in-one Command for Model Fitting/Testing (daline.fit) 34

4.2 Least Squares Family . 38

4.2.1 Ordinary Least Squares (LS) . 39

4.2.2 Ordinary Least Squares with Generalized Inverse (LS_PIN) 39

4.2.3 Least Squares with Singular Value Decomposition (LS_SVD) 40

4.2.4 Least Squares with Complete Orthogonal Decomposition (LS_COD) 41

4.2.5 Least Squares with Principal Component Analysis (LS_PCA) 43

4.2.6 Least Squares with Huber Loss Function: a Direct Solution (LS_HBLD) 45

4.2.7 Least Squares with Huber Loss Function: an Equivalent Solution (LS_HBLE) 47

4.2.8 Least Squares with Huber Weighting Function (LS_HBW) 49

4.2.9 Generalized Least Squares (LS_GEN) . 51

4.2.10 Total Least Squares (LS_TOL) . 53

4.2.11 Least Squares with Clustering (LS_CLS) . 54

4.2.12 Least Squares with Lifting Dimension: Lifting the Whole x Jointly (LS_LIFX) . . . 56

4.2.13 Least Squares with Lifting Dimension: Lifting the Elements of x Individually

(LS_LIFXi) . 59

4.2.14 Weighed Least Squares (LS_WEI) . 61

4.2.15 Recursive Least Squares (LS_REC) . 63

4.2.16 Repeated Least Squares (LS_REP) . 65

4.3 Partial Least Squares Regression Family . 67

4.3.1 Ordinary Partial Least Squares with SIMPLS (PLS_SIM) 67

4.3.2 Ordinary Partial Least Squares with SIMPLS Using Rank of X (PLS_SIMRX) . . . 68

4.3.3 Ordinary Partial Least Squares with NIPALS (PLS_NIP) 69

4.3.4 Partial Least Squares Bundling Known/Unknown Variables and Replacing Slack

Bus’s Power Injection (PLS_BDL) . 70

4.3.5 Partial Least Squares Bundling Known/Unknown Variables (PLS_SIMY2) 72

4.3.6 Partial Least Squares Bundling Known/Unknown Variables: the Open-source Ver-

sion (PLS_BDLopen) . 72

4.3.7 Recursive Partial Least Squares with NIPALS (PLS_REC) 73

4.3.8 Recursive Partial Least Squares with NIPALS with Forgetting Factors (PLS_RECW) 75

4.3.9 Repeated Partial Least Squares with NIPALS (PLS_REP) 77

4.3.10 Partial Least Squares with Clustering (PLS_CLS) 79

CONTENTS v

4.4 Ridge Regression Family . 81

4.4.1 Ordinary Ridge Regression (RR) . 81

4.4.2 Ordinary Ridge Regression with the Voltage-angle Coupling (RR_VCS) 83

4.4.3 Ordinary Ridge Regression with K-plane Clustering (RR_KPC) 84

4.4.4 Locally Weighted Ridge Regression (RR_WEI) . 86

4.5 Support Vector Regression Family . 88

4.5.1 Ordinary Support Vector Regression: a Direct Solution (SVR) 89

4.5.2 Support Vector Regression with Polynomial Kernel (SVR_POL) 91

4.5.3 Support Vector Regression with Ridge Regression (SVR_RR) 93

4.5.4 Support Vector Regression with Chance-constrained Programming (SVR_CCP) . . . 94

4.6 Linearly Constrained Programming Family . 97

4.6.1 General Inputs . 97

4.6.2 General Tips . 97

4.6.3 Linearly Constrained Programming with Box Constraints (LCP_BOX) 97

4.6.4 Linearly Constrained Programming without Box Constraints (LCP_BOXN) 99

4.6.5 Linearly Constrained Programming with Jacobian Guidance Constraints (LCP_JGD) 100

4.6.6 Linearly Constrained Programming without Jacobian Guidance Constraints

(LCP_JGDN) . 102

4.6.7 Linearly Constrained Programming with Coupling Constraints (LCP_COU and

LCP_COU2) . 103

4.6.8 Linearly Constrained Programming without Coupling Constraints (LCP_COUN and

LCP_COUN2) . 104

4.7 Distributionally Robust Chance-constrained Programming Family 106

4.7.1 Moment-based Distributionally Robust Chance-constrained Programming with X

as Random Variable (DRC_XM) . 108

4.7.2 Moment-based Distributionally Robust Chance-constrained Programming with X

and Y as Random Variables (DRC_XYM) . 110

4.7.3 Divergence-based Distributionally Robust Chance-Constrained Programming with

X and Y as Random Variables (DRC_XYD) . 112

4.8 Physical-model-informed Family . 115

4.8.1 DCPF (DC) . 115

4.8.2 DCPF with Ordinary Least Squares (DC_LS) . 116

4.8.3 Decoupled Linearized Power Flow (DLPF) . 116

4.8.4 DLPF with a Data-driven Correction (DLPF_C) . 117

4.8.5 Power Transfer Distribution Factor (PTDF) . 118

CONTENTS vi

4.8.6 First-order Taylor Approximation (TAY) . 119

4.9 Direct Solution Family . 121

4.9.1 Direct QR Decomposition (QR) . 121

4.9.2 Direct Left Division (LD) . 122

4.9.3 Direct Generalized Inverse (PIN) . 122

4.9.4 Direct Singular Value Decomposition (SVD) . 123

4.9.5 Direct Complete Orthogonal Decomposition (COD) 124

4.9.6 Direct Principal Component Analysis (PCA) . 125

5 Performance Evaluation and Visualization 127

5.1 Accuracy . 127

5.2 Visualization of Computational Efficiency . 139

5.2.1 Computational time rankings of multiple methods (daline.time) 139

5.2.2 Computational time evolution curves of multiple methods (daline.time) 141

6 All-in-one Command for Daline (daline.all) 143

6.1 Inputs . 143

6.2 Outputs . 143

6.3 Examples . 144

Chapter 1

Introduction

1.1 Background

Due to the nonconvex nature of the alternating current (AC) power flow model, linearized power flow

models are the major ones integral to daily operations, market clearing, and grid planning of power

systems. These models facilitate trillion-dollar markets and affect every consumer globally. Enhancements

in linear power flow models, either theoretical or technological, could deliver substantial societal and

financial benefits.

Power flow linearization has been a focus of intense research for decades, aiming to enhance accuracy

and efficiency. Recently, the surge in data-centric methodologies across science, engineering, technology,

and societal applications has reinvigorated interest in this field, leading to the emergence of data-driven

power flow linearization (DPFL). This field is rapidly evolving, driven by the widespread use of phasor

measurement units, advanced communications infrastructures, sophisticated analysis techniques, real-

time computing capabilities, and a keen interest in data-centric methods, making DPFL highly relevant.

Unlike traditional physics-driven (or say, model-driven) power flow linearization, DPFL methods

often do not require pre-existing physical models of the power grid, relying instead on system measure-

ments to train linear models. The advantages of DPFL include higher approximation accuracy due to its

assumption-free, customizable nature (often significantly outperforming traditional methods), applicabil-

ity in scenarios where physical parameters are missing, implicit consideration of power losses, integration

of real-time measurements, and the accommodation of realistic impacts such as control actions and hu-

man behaviors. Further details on DPFL are available in our previous works [1], [2], and [3], which cover

DPFL overviews, DPFL theories, and DPFL simulations, respectively.

With numerous DPFL approaches available, selecting the most suitable one can be challenging. Often,

new methods are introduced with only selective comparisons highlighting their advantages, without

thorough evaluations against all existing methods. Moreover, over 95% of DPFL approaches are not open-

source, making them less accessible for research and education. Conversely, physics-driven approaches

are typically more user-friendly, being integrated into common software and open-source toolkits, which

continue to be popular among researchers, engineers, and educators.

1

CHAPTER 1. INTRODUCTION 2

To facilitate the adoption of DPFL, and more importantly, to make DPFL methods easily-accessible

fundamental tools for the community, it is crucial to provide a comprehensive toolkit that includes all

existing DPFL methods as built-in options. Such a toolkit would not only allow users to leverage the

latest advancements in DPFL and tailor the tools to their specific needs but also enable the development

of new methods based on existing ones. Although ten open questions in DPFL were already listed in [3],

there are undoubtedly more that deserve attention. A well-equipped DPFL toolkit could significantly

enhance this research, improving both accuracy and computational efficiency, thereby benefiting user

projects, improving the societal and financial benefits of power systems, and ultimately reducing consumer

electricity costs.

This is the motivation behind the development of Daline, a data-driven power flow linearization

toolbox [4]. Daline is a package of Matlab M-files. Its features include data generating, data polluting,

data cleaning, and data normalizing, as well as model training, model testing, accuracy ranking, com-

putational efficiency ranking/evolving, and multidimensional result visualizing. Over 55 linearization

methods, either from the existing works or developed by us, are built in Daline. Overall, Daline was

created to help users handle complex simulation and comparison tasks using just a few simple commands

— typically, learning just three Daline commands is enough for most; if users simply want to obtain a

highly accurate linear power flow model for a given or standard power system, learning only one Daline

command is enough. The official website of this toolbox can be found at:

https://www.shuo.science/daline

Daline was initially developed by Mengshuo Jia, Wen Yi Chan, and Gabriela Hug from the Power

Systems Lab at ETH Zürich. The development of Daline was supported by the Swiss National Sci-

ence Foundation (No. 221126) and the Swiss National Centre of Competence in Research “Dependable,

Ubiquitous Automation.”

https://www.shuo.science/daline

1.2 License and Terms of Use

Starting from version 1.1.5, Daline is distributed under the 3-Clause BSD License [5].

Copyright (c) 2024, Primary Developers to Daline (see authors.txt file).

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note that the data generation functionality of Daline is built on MATPOWER [6], and the built-in

optimization methods of Daline utilize toolboxes CVX [7] and YALMIP [8]1. To minimize installation

and setup costs, Daline includes redistributed versions of these toolboxes, in strict compliance with

their redistribution licenses. License files for these toolboxes are also included in Daline. Therefore,

if users redistribute Daline, they must adhere not only to Daline’s license but also to the licenses of

these included toolboxes.
1Users will not interact with the underlying toolboxes, as they have been fully encapsulated within Daline. Interaction

with the interface of Daline alone is sufficient for users to access all functionalities.

https://matpower.org/
https://cvxr.com/cvx/
https://yalmip.github.io/

CHAPTER 1. INTRODUCTION 4

1.3 Citing Daline

While not mandated by the terms of the license, we do request that any publications derived from the

use of Daline explicitly acknowledge this by citing reference [4].

Mengshuo Jia, Wen Yi Chan, and Gabriela Hug. “Daline: A Data-driven Power Flow Linearization

Toolbox for Power Systems Research and Education”. In: Under Review (2024)

@ARTICLE{Daline,

author={Jia, Mengshuo and Chan, Wen Yi and Hug, Gabriela},

title={Daline: A Data-driven Power Flow Linearization Toolbox for Power Systems

Research and Education},

year={2024},

}

(The above reference will be made public very soon. The update of the reference information can be

found from the “Downloads” page at https://www.shuo.science/daline)

Furthermore, it is true that we have independently implemented the DPFL methods in Daline

given that over 95% of the DPFL literature does not provide open-source code, except for one notable

exception which is frequently referenced in later sections. However, we strongly encourage users to cite

the original sources of these methods when adopting them through Daline, to honor the contributions

of the researchers who originally proposed these approaches. To be clear, we emphasize the following

points:

• We extensively cite the original papers (if any) of the DPFL methods in several ways, including,

but not limited to: (i) in the table summarizing all built-in methods, (ii) within specific subsections

introducing each method, and (iii) in the script for the main function of each method.

• We have attempted to accurately reproduce the methods in code based on the descriptions in the

original papers. However, we cannot guarantee that the methods implemented in Daline perfectly

reflect the intentions of the original authors, due to various factors such as the lack of open-source

code (with one exception) and the incomplete detail in many papers (for papers with blurring details,

we have even implemented multiple versions of their methods, as users will see in Table 2.1 in the

next chapter). We highlight the original papers in both the manual and the code scripts primarily

to acknowledge their theoretical contributions, and we encourage users to do the same. Nonetheless,

we do not claim — and indeed it is not feasible — that the built-in methods in Daline are exact

replicas of those envisioned by the original method creators.

• Not all methods built into Daline originate from the literature. We also include a number of DPFL

methods we developed, which have not yet been reported in existing DPFL studies. For these

methods, no references are provided.

https://www.shuo.science/daline

Chapter 2

Getting Started

2.1 System Requirements

Daline is compatible with 64-bit versions of Linux, Mac OSX, and Windows. Initially, it was developed

using MATLAB 2020b on a device equipped with an M1 chip. Generally, we recommend using the most

recent version of MATLAB available to you. Ideally, the MATLAB version should not be more than five

years old.

2.2 Installation

Installing Daline is straightforward. After downloading Daline, users simply need to run the setup file

within the Daline directory, and that is it — “if you find the installation easy, you are doing it right.”

But for clarity, the detailed steps are outlined below:

(1) Follow the download instructions on the Daline Home Page or the Github page (Github page will

coming soon). You should end up with a file named dalineXXX.zip, where XXX depends on the

version of Daline.

(2) Unzip the downloaded file. Move the resulting dalineXXX directory to the location of your choice.

These files should not need to be modified, so it is recommended that they be kept separate from

your own code.

(3) Open MATLAB and set the “Current Folder” to the directory containing dalineXXX. In the MAT-

LAB command window, enter daline_setup to execute the setup and test suite, including installing

Daline, adding it to the path of MATLAB, and verifying that Daline is properly installed and

functioning (daline_setup will activate the parallel pool of MATLAB). Specifically,

• Enter daline_setup or daline_setup(’fast’) to perform a complete setup, followed by a

quick initial test of Daline’s core functionalities, including data generation, pollution, cleaning,

and processing, as well as modeling training and testing. Note that the process will skip the 17

built-in optimization-based linearization methods but only test the rest 40 built-in linearization

5

https://www.shuo.science/daline
https://github.com/JarvisETHZ/Daline

CHAPTER 2. GETTING STARTED 6

methods, as the optimization-based methods are more time-consuming. If necessary, users can

separately test these methods using daline_test, as explained in Section 2.3.

• Enter daline_setup(’full’) to conduct a complete setup followed by a comprehensive testing

process, including all optimization-based linearization methods. Note that this option may take

significantly longer than daline_setup or daline_setup(’fast’).

Note that the output of daline_setup(’full’) should look similar to the following, with variations

based on the availability of optional packages, solvers, etc.

% Either daline_setup, daline_setup('fast'), or daline_setup('full')
>> daline_setup('full')
Setting Up Daline Done!

Testing Data Generation Succeeded!

Testing Data Pollution Succeeded!

Testing Data Cleaning Succeeded!

Testing Data Normalization Succeeded!

Testing Available Solvers Done!

Solver fminunc Available!

Solver fmincon Available!

Solver quadprog Available!

Solver Gurobi Available!

Solver SeDuMi Available!

Solver SDPT3 Available!

Testing Linearization Methods Start!

Method LS Available!

Method QR Available!

Method LD Available!

Method PIN Available!

Method SVD Available!

Method PCA Available!

Method LS_SVD Available!

Method LS_PIN Available!

Method LS_COD Available!

Method COD Available!

Method LS_PCA Available!

Method LS_HBW Available!

Method LS_HBLD Available!

Method LS_HBLE Available!

Method LS_GEN Available!

Method LS_LIFX Available!

Method LS_LIFXi Available!

CHAPTER 2. GETTING STARTED 7

Method LS_TOL Available!

Method LS_CLS Available!

Method LS_WEI Available!

Method LS_REC Available!

Method LS_REP Available!

Method PLS_SIM Available!

Method PLS_SIMRX Available!

Method PLS_NIP Available!

Method PLS_BDL Available!

Method PLS_BDLY2 Available!

Method PLS_BDLopen Available!

Method PLS_REC Available!

Method PLS_RECW Available!

Method PLS_REP Available!

Method PLS_CLS Available!

Method RR Available!

Method RR_WEI Available!

Method RR_KPC Available!

Method RR_VCS Available!

Method SVR Available!

Method SVR_POL Available!

Method SVR_CCP Available!

Method SVR_RR Available!

Method LCP_BOXN Available!

Method LCP_BOX Available!

Method LCP_JGDN Available!

Method LCP_JGD Available!

Method LCP_COUN Available!

Method LCP_COUN2 Available!

Method LCP_COU Available!

Method LCP_COU2 Available!

Method DRC_XM Available!

Method DRC_XYM Available!

Method DRC_XYD Available!

Method DC Available!

Method DC_LS Available!

Method DLPF Available!

Method DLPF_C Available!

Method PTDF Available!

Method TAY Available!

CHAPTER 2. GETTING STARTED 8

--

Daline Setting Up and Initial Test Completed!

Available Methods: 57 Methods

Unavailable Methods: 0 Methods

Available Solvers: fminunc, fmincon, quadprog, Gurobi, SeDuMi, SDPT3

Please consult the user's manual for more information.

--

Remark 1: Daline includes some executable files from the redistributed version of CVX. Users’ operating

systems may not recognize the developer or may flag these files as untrusted. Consequently, users must

manually authorize these files and configure their operating systems to allow their execution before or

during setting up Daline.

Remark 2: To minimize the installation and setup cost of users, solvers SDPT3 and SeDuMi are included

in Daline via the redistributed version of CVX; fminunc, quadprog, and fmincon are built in the

MATLAB Optimization Toolbox.

Remark 3: We assume that users have installed the MATLAB Optimization Toolbox and the Statis-

tics and Machine Learning Toolbox when they installed MATLAB. To verify if these toolboxes are in-

stalled, users can enter license(’test’, ’Optimization_Toolbox’) and license(’test’, ’Statis-

tics_Toolbox’) commands in the MATLAB command window. If the returned value is 1, the toolbox

is installed and licensed. If users have not installed these toolboxes, nor any other general optimization

solvers (such as Gurobi), we recommend installing them to enjoy the full functionality of Daline. With-

out these toolboxes, the partial least squares-based methods and optimization-based methods may be

affected. To install them, users have the following options:

• Rerun the MathWorks Installer to add any additional products not currently included in your

installation. You do not need to reinstall MATLAB if you select the same installation folder. For

instructions on installing products using the MathWorks Installer, see here.

• Use the Add-On Explorer in MATLAB, if your license permits usage of it. For instructions on

installing products using the Add-On Explorer, see here.

Remark 4: If users have not installed Gurobi, they may need to do so manually if it is specifically required.

However, this installation is optional, as only two linearization methods in Daline require mixed-integer

solvers like Gurobi (see Table 2.2 for more information). For those who wish to install Gurobi, we provide

a “Gurobi Setup Tutorial.pdf” in the “docs” folder of Daline, detailing how to set it up for free after

connecting to the university network (yes, setting up Gurobi is not that easy). Please note that Gurobi

should be used with YALMIP (again, see Table 2.2 for more information), as the redistributed version

of CVX included in Daline does not currently support commercial solvers.

2.3 Major Functionalities

Daline’s main functionality is to solve power flow linearization problems using data-driven techniques.

https://cvxr.com/cvx/
https://www.math.cmu.edu/~reha/sdpt3.html
https://sedumi.ie.lehigh.edu/
https://ch.mathworks.com/help/optim/ug/fminunc.html
https://ch.mathworks.com/help/optim/ug/quadprog.html
https://ch.mathworks.com/help/optim/ug/fmincon.html
https://ch.mathworks.com/products/optimization.html
https://ch.mathworks.com/matlabcentral/answers/98886-how-do-i-install-matlab-and-its-toolboxes
https://ch.mathworks.com/videos/add-on-explorer-106745.html
https://www.gurobi.com/academia/academic-program-and-licenses/

CHAPTER 2. GETTING STARTED 9

Consequently, the toolbox provides an entire suite of functions that allow users to:

1. Generate (optimal) power flow data from predefined power systems if needed,

2. Process artificial or realistic power system data into suitable inputs for data-driven linearization,

3. Choose training methods and test the resulting linearization models,

4. View, save, and analyze linearization results.

Given the appropriate inputs, these components can be run as standalone modules. However, they

can also be “strung together” to form an entire, self-contained, but highly customizable Daline pipeline.

Specifically, the user interface of Daline consists of a number of function wrappers, each containing

several to dozens of functions. The main function wrappers of Daline include:

• daline.all: Manages a complete cycle from data generation to results visualization.

• daline.data: Handles data generation, pollution, cleaning, and normalization.

• daline.generate: Generates training and testing data sets.

• daline.noise: Adds noise to data to simulate real-world conditions.

• daline.outlier: Introduces outliers into the data.

• daline.denoise: Removes noise from the data.

• daline.deoutlier: Filters outliers from the data.

• daline.normalize: Normalizes data sets with the unit energy normalization.

• daline.fit: Trains and tests models based on the data and the selected method.

• daline.rank: Compares and ranks different training methods.

• daline.time: Assesses the computing efficiency of single or multiple training methods.

• daline.plot: Visualizes results in various dimensions with different themes.

A key feature of Daline is its support for an extensive collection of linearization methods. The

majority of these methods are data-driven (some also have a physics-informed foundation), while others

are purely physics-based, serving as benchmarks. The built-in linearization methods are listed in Table

2.1.

CHAPTER 2. GETTING STARTED 10

Table 2.1: Built-in linearization approaches in Daline

Data-driven power flow linearization approaches

Ref. Built-in method name training algorithm supporting technique

[9] LS Ordinary Least Squares -

[10, 11] LS_SVD Least Squares with Singular Value Decomposition -

[10, 11] LS_COD Least squares with Complete Orthogonal Decomposition -

[12, 13] LS_HBLD Least Squares with Huber Loss - Solved Directly -

[12, 13] LS_HBLE Least Squares with Huber Loss - Equivalent Convex Transformation -

[14] LS_TOL Total Least Squares -

[15] LS_CLS Clustering-based Least Squares -

[16, 17] LS_LIFX Ordinary Least Squares Dimension Lifting: Lift x

[16] LS_LIFXi Ordinary Least Squares Dimension Lifting: Lift the i-th dimension of x

[9] LS_WEI Ordinary Least Squares Voltage Squaring; Forgetting Factor

[18] LS_REC Recursive Least Squares -

- LS_REP Repeated Least Squares -

- LS_PIN Least Squares with Pseudoinverse -

- LS_PCA Least Squares with Principal Component Analysis -

- LS_GEN Generalized Least Squares with Pseudoinverse -

- LS_HBW Least Squares with Huber Weighting Function -

[19] PLS_SIM Ordinary Partial Least Squares with SIMPLS -

[19] PLS_SIMRX Ordinary Partial Least Squares with SIMPLS using rank of X -

[20] PLS_BDLopen Ordinary Partial Least Squares (Open-source Code of [20]) Bundle Variables; Replace Slack Bus’s Injection

[20] PLS_BDL Ordinary Partial Least Squares Bundle Variables; Replace Slack Bus’s Injection

[20] PLS_BDLY2 Ordinary Partial Least Squares Bundle Variables

[21] PLS_REC Recursive Partial Least Squares -

[21] PLS_RECW Recursive Partial Least Squares Forgetting Factor

[21] PLS_NIP Ordinary Partial Least Squares with NIPALS -

- PLS_CLS Clustering-based Partial Least Squares -

- PLS_REP Repeated Partial Least Squares with NIPALS -

[22] RR Ordinary Ridge Regression -

[22] RR_VCS Ordinary Ridge Regression Voltage-angle Coupling; Voltage Squaring

[23] RR_KPC Clustering-based Ridge Regression Voltage Squaring

[24] RR_WEI Locally Weighted Ridge Regression -

[25] SVR Ordinary Support Vector Regression Voltage Squaring

[26] SVR_CCP Chance-constrained Programming Grid Topology Integration

[27, 28] SVR_POL Support Vector Regression with Kernels -

[29] SVR_RR Support Vector Regression with Regularization -

[30] LCP_BOX Linearly Constrained Program with Bound Constraints Voltage Squaring

[30] LCP_COU or LCP_COU2 Linearly Constrained Program with Coupling Constraints Grid Topology Integration; Voltage Squaring

[14] LCP_JGD Linearly Constrained Program with Structure Constraints Bundle Known and Unknown Variables

[31] DRC_XM Moment-based DRCC§ Program: Random X -

[31] DRC_XYM Moment-based DRCC§ Program: Random X and Y -

[31] DRC_XYD Divergence-based DRCC§ Program: Random X and Y -

[32, 33] DC_LS Ordinary Least Squares Physical Model’s Coefficient Optimization via LS

[34] DLPF_C Ordinary Least Squares Physical Model’s Error Correction via QR

[30] LCP_BOXN Linearly Constrained Program without Bound Constraints Voltage Squaring

[30] LCP_COUN or LCP_COU2N Linearly Constrained Program without Coupling Constraints Voltage Squaring

[14] LCP_JGDN Linearly Constrained Program without Structure Constraints Bundle Known and Unknown Variables

- QR Direct QR Decomposition -

- LD Direct Left Division -

- PIN Direct Generalized Inverse -

- SVD Direct Singular Value Decomposition -

- COD Direct Complete Orthogonal Decomposition -

- PCA Direct Principal Component Analysis -

Physics-driven power flow linearization approaches

Ref. Abbreviation Approach

- DC Classic Direct Current Model

- PTDF Classic Power Transfer Distribution Factors

- TAY Warm-start 1st order Taylor approximation

[35] DLPF Decoupled Linearized Power Flow

§ : “DRCC” refers to “Distributionally Robust Chance-constrained”

CHAPTER 2. GETTING STARTED 11

Table 2.2: Summary of Methods that Require Optimization Toolkits and Solvers (SDPT3 and SeDuMi
are included inDaline via CVX; fminunc, quadprog and fmincon are built in the MATLAB Optimization
Toolbox; for Gurobi, users need to install it manually if needed)

Method Required Toolkits Applicable Solvers Recommendation(s)

LS_HBLD MATLAB Optimization Toolbox fminunc -

LS_HBLE YALMIP or CVX fmincon, Gurobi YALMIP + fmincon

LS_WEI YALMIP or CVX quadprog, Gurobi, SDPT3, SeDuMi CVX + SeDuMi

SVR YALMIP or CVX quadprog, Gurobi YALMIP + quadprog

SVR_RR YALMIP or CVX quadprog, Gurobi YALMIP + quadprog

SVR_CCP YALMIP or CVX Gurobi YALMIP + Gurobi

DRC_XYD YALMIP or CVX Gurobi YALMIP + Gurobi

DRC_XM CVX SDPT3, SeDuMi CVX + SeDuMi

DRC_XYM CVX SDPT3, SeDuMi CVX + SeDuMi

LCP_BOX CVX quadprog, SDPT3, SeDuMi SeDuMi

LCP_BOXN CVX quadprog, SDPT3, SeDuMi SeDuMi

LCP_JGD CVX SDPT3 SDPT3

LCP_JGDN CVX SDPT3 SDPT3

LCP_COU CVX quadprog, SDPT3, SeDuMi quadprog

LCP_COUN CVX quadprog, SDPT3, SeDuMi quadprog

LCP_COU2 CVX quadprog, SDPT3, SeDuMi quadprog

LCP_COUN2 CVX quadprog, SDPT3, SeDuMi quadprog

Remark: The solvers listed in Table 2.2 are not mandatory; they are integrated into Daline to simplify
the installation and setup process for users. Users are free to use any solver they are familiar with,
provided it is capable of addressing the corresponding problems and is already installed and functioning.
For example, SeDuMi can be replaced with other cone optimization solvers, and Gurobi can be replaced
with CPLEX, etc.

Additionally, as mentioned previously, users can quickly test specific methods of interest using da-

line_test to verify their availability after Daline has been automatically set up; see the examples below.
Normally, all non-optimization-based methods should be ready to use immediately after setup. However,
the availability of optimization-based methods depends on the solvers (and optimization toolboxes) in-
stalled. By integrating the re-distribution versions of toolboxes and solvers, Daline already reduced the
need for additional installations of external resources. Typically, only two optimization-based methods
that utilize integer variables, SVR_CCP and DRC_XYD, may be unavailable if solvers such as Gurobi are not
installed manually.

% Test all the built-in methods (57 methods in total)

>> daline_test % Or daline_test('full')

% Test only the non-optimization-based methods (40 methods in total)

>> daline_test('fast')

% Test methods of interest, such as 'PLS_REC' and 'RR_KPC'
>> daline_test({'PLS_REC'; 'RR_KPC'})

CHAPTER 2. GETTING STARTED 12

2.4 Customization Approaches

While Daline supports a wide array of function wrappers, this toolbox is meticulously designed to ensure
consistency across its entire range of function wrappers, thereby enhancing user experience. Central to
Daline’s design philosophy are two universal and intuitive methods for customization: name-value pairs
and the option structure. This section aims to provide users with an overview of these customization
techniques, which are applicable throughout the toolbox. In-depth explorations of individual wrappers
and their unique parameters will be covered in the sections that follow.

Name-value pairs

Function parameters can be specified as name-value pairs, providing a straightforward way to customize
functionality. In total, there are more than 300 name-value pairs embedded in Daline. However,

1. Order Independence: The name-value pairs can be provided in any sequence, allowing users to
organize their code in the most logical and intuitive manner. This flexibility ensures that the order
of parameters does not impact the function’s execution.

2. Selective Specification: It is not necessary to specify all possible parameters. Users only need to
provide those parameters they wish to customize. The toolbox automatically uses default settings for
any parameters not explicitly mentioned, simplifying initial use and reducing the need for extensive
configuration.

The following example highlights just three of the 49 adjustable name-value pairs available within
daline.data:

>> data = daline.data('case.name', 'case118', 'data.program', 'acpf', 'data.baseType', '
TimeSeriesRand');

’case.name’: name of a parameter, specifies the power system case to study.

’case118’: value for ’case.name’ parameter, i.e., studying the IEEE 118-bus system.

’data.program’: name of another parameter, specifying how power flow will be computed.

’acpf’: value for ’data.program’, i.e., using the AC power flow calculation.

’data.baseType’: name of another parameter, specifying how the data will be generated.

’TimeSeriesRand’: value for ’data.baseType’, i.e., generated as a random time series.

Indeed, managing multiple parameters, particularly when comparing different linearization methods
with various hyperparameters, can be tedious when using name-value pairs. To streamline this process,
Daline offers a default parameter sheet called func_default_option_category. This sheet organizes
all adjustable parameters and options, complete with their default values and descriptions. Users can
effortlessly configure multiple parameters simultaneously by adjusting the default values in this sheet.
Setting parameters in this sheet can also help avoid conflicts that occur when different approaches adopte
the same parameter names.

Option structure

For a more streamlined way to specify parameters, Daline allows using an option structure. This
structure can be pre-configured with desired parameters and their values, and then passed to functions
as a single argument. This method shares the same benefits of flexibility and selective specification as

CHAPTER 2. GETTING STARTED 13

name-value pairs. Yet, by defining an option structure with custom settings, users encapsulate all their
configurations in one place. This structure can then be reused across multiple function calls, promoting
code reusability and reducing redundancy. E.g.,

>> opt = daline.setopt('case.name', 'case118', 'data.program', 'acpf', 'data.baseType',
'TimeSeriesRand');

>> data = daline.data(opt);

For some wrapper functions, they require a primary argument (and/or a secondary argument) followed
by name-value pairs. E.g., the first argument of daline.all should refer to a power system case (either
internal cases of MATPOWER or external cases defined by users):

>> model = daline.all('case118', 'data.baseType', 'TimeSeriesRand', 'method.name', 'RR'
);

% Regardless of the linearization method used, model.Beta is always the outputted

linear model => a mapping matrix that projects the (selected) independent

variables to the (selected) dependent variables. This linear model can be

readily used for many applications.

For such wrappers, users can still use daline.setopt to simplify the arguments of these functions,
e.g.,

>> opt = daline.setopt('data.baseType', 'TimeSeriesRand', 'method.name', 'RR');
>> model = daline.all('case118', opt);

Remark: When users need to adjust numerous parameters, manually typing the name-value pairs
of these parameters and entering them into daline.rank can be cumbersome and inelegant. In
such cases, users are suggested to directly modify the file that holds the default parameters, named
func_default_option_category. After setting these default parameters to meet their requirements,
users can then straightforwardly call the wrappers without the need to manually input a large number
of name-value pairs themselves.

2.5 Customizable Parameters

Given that Daline supports hundreds of parameters, understanding the available parameters for cus-
tomization is crucial. The daline.getopt function provides information about the adjustable options
and default settings, aiding users in fine-tuning their analyses. The usage of daline.getopt is straight-
forward. For instance, if users wish to explore the parameters associated with data generation and the
addition of outliers, the following code will retrieve these parameters within an options structure:

>> opt = daline.getopt('generate data', 'add outlier');

It is important for users to be familiarized with the names of the parameter categories before attempt-
ing to access them via daline.getopt, e.g., ‘generate data’ and ‘add outlier’ shown above. Each category
name can be utilized as an argument in daline.getopt, which is capable of accepting multiple categories

CHAPTER 2. GETTING STARTED 14

simultaneously. Table 2.3 provides a summary of all available parameter categories. Furthermore, the
nomenclature of every built-in method listed in Table 2.1 is also recognized as a valid category name
when interacting with daline.getopt, allowing users to retrieve the hyperparameters of the specified
method. E.g.,

>> opt = daline.getopt('RR_KPC');

Table 2.3: Parameter Categories in Daline

Category Meaning

’system’ Default options related to system case .

’generate data’

Default options related to data generation. Settings include training and testing data
points, redundancy, power flow program, data type, ranges, switches for parallel
computing, and other various data settings.

’add outlier’
Default options related to adding outlier. Settings include switches for random
fixedness, training/testing data switches, outlier percentages, and others.

’add noise’
Default options related to adding noise. Settings include switches for random fixedness,
training/testing noise addition, signal-to-noise ratio, etc.

’filter outlier’
Default options related to filtering outlier. Settings include switch for training/testing
data, filter method, tolerance level, etc.

’filter noise’
Default options related to filtering noise. Settings include switches for training/testing
data, noise degree estimation, dynamic estimation model, initialization settings, etc.

’normalize data’ Data normalization related default options.

’mpc index’ Index definition for built-in system cases of MATPOWER.

’method’
Default linearization method selection. Settings include the default method name and
the entire list of supported methods.

’warning’ Default switches for turning warning on/off for all methods.

’variable’
Global variable settings for all methods, including predictor, response, various flags for
lifting dimensions, etc.

Any Built-in Method Name
listed in Table 2.1

Default hyperparameters of the specified method.

It is crucial to understand that although daline.getopt is capable of accepting multiple categories
in a single call, it is restricted to handling just one method name at a time. This limitation is in
place because various methods might share parameters, leading to potential ambiguities. To prevent any
confusion, daline.getopt is designed to process only a single method name per invocation. However, this
constraint does not apply to categories; you can input as many categories as needed without restriction.
E.g.,

% Correct:

>> opt = daline.getopt('generate data', 'RR_KPC');
% Incorrect:

>> opt = daline.getopt('generate data', 'RR_KPC', 'RR');
% Incorrect:

>> opt = daline.getopt('RR_KPC', 'RR');

CHAPTER 2. GETTING STARTED 15

2.6 Daline Examples

As users have observed, several examples of Daline are already provided. Many more additional examples
will be introduced in the subsequent chapters. The scripts for all these examples are stored in the
“examples” folder within the Daline package.

Chapter 3

Data Generating and Processing

Power system measurements are essential for implementing data-driven linearization methods. For users
without historical data for a targeted power system, Daline provides the functionality to create synthetic
data specifically designed for the given system. This system may be defined using either a standard
MATPOWER case or a user-supplied custom case that complies with the MATPOWER format. Daline
further enhances the realism of this synthetic data by introducing noise and/or outliers if needed. For
those who already possess data, Daline offers tools to refine it, including filtering out noise and outliers.
It also provides data normalization capabilities to facilitate more effective model fitting. The above
operations are executed by Daline’s data generation and processing modules, which are elaborated
upon in this chapter. Specifically, this chapter begins by introducing the individual function wrappers
associated with data generation and processing, including

• daline.generate: Generates training and testing data sets.

• daline.noise: Adds noise to data to simulate real-world conditions.

• daline.outlier: Introduces outliers into the data.

• daline.denoise: Removes noise from the data.

• daline.deoutlier: Filters outliers from the data.

• daline.normalize: Normalizes data sets with the unit energy normalization.

To further enhance user convenience, Daline also offers:

• daline.data: Handles data generation, pollution, cleaning, and normalization.

daline.data integrates all functions associated with data generation and processing, which will be
discussed in detail at the end of this chapter.

It is important to note that the outputs of all the aforementioned wrappers are consistent: a struc-
tured data format. This format will be elaborated upon in Section 3.2.1.

3.1 Data Generating (daline.generate)

In Daline, the task of data generation is accomplished through the daline.generate wrapper. The
fundamental operations of daline.generate are outlined as follows:

16

CHAPTER 3. DATA GENERATING AND PROCESSING 17

1. Load the Case: daline.generate initiates the process by loading the power system case specified
by the user. This can be either a standard case included with MATPOWER or a custom case
provided by the user that adheres to the MATPOWER format.

2. Alter Operating Points: Subsequently, daline.generate modifies various parameters such as load
conditions, power generation, and nodal voltage magnitudes of the system, in accordance with user-
defined settings and strategies. This step is aimed at generating a diverse set of potential operating
points for the system.

3. Compute Power Flows: For each generated operating point, daline.generate computes the power
flow results utilizing one of the power flow solvers specified by the user. This produces a compre-
hensive dataset representing power flow measurements under varied conditions.

4. Organize Data: In the final step, daline.generate divides the power flow data into training and
testing sets as per the user’s configuration. These datasets are then organized into a structured
format, grouping different types of data (such as voltage magnitudes, voltage angles, active branch
flows, etc.) for ease of use.

3.1.1 Input

The daline.generate function accepts input either as name-value pairs or as an option structure that
contains the user’s name-value configurations. The default name-value parameters for daline.generate
are detailed in Table 3.1, which can all be treated as inputs.

Table 3.1: Default name-value input arguments for daline.generate.

Parameter Format Default Description

case.name character ’case39’ Name of a MATPOWER case of a power system.

See Appendix D.3 in [36] for the full list of MAT-

POWER cases. This parameter is exclusive and

cannot be used concurrently with the parameter

case.mpc; only one of the two can be set at a time.

case.mpc struct mpc of case39 in

MATPOWER

A power system defined in the standard mpc struc-

ture. See Section 3.1 in [36] for further details on

the structure of mpc case. This parameter is ex-

clusive and cannot be used concurrently with the

parameter case.name; only one of the two can be

set at a time.

num.trainSample integer 300 Number of training data points.

num.testSample integer 200 Number of testing data points.

CHAPTER 3. DATA GENERATING AND PROCESSING 18

Table 3.1 continued from previous page

Parameter Format Default Description

num.redundant integer 50 Redundant samples to account for potential failure

if computing (optimal) power flows (though this

is not common, it may happen if users, e.g., in-

crease the loading condition too much, do not allow

the change in voltage magnitudes in certain cases,

etc.). Unless the number of failures is greater than

num.redundant, users always get the expected num-

bers of training and testing data points.

data.parallel binary 1 Use MATLAB Parallel Computing Toolbox for

speedup: 1 for yes, 0 for no.

data.program character ’acpf’ Data generation method: ’acopf’, ’acpf’, or

’dcopf acpf’. Note that ’dcopf acpf’ first runs

DCOPF for generation dispatch then runs ACPF

to mock the real AC power flows after accepting

the DCOPF dispatch plan.

data.baseType character ’TimeSeriesRand’ Type of data generation: ’Random’, ’TimeSeries’,

’TimeSeriesRand’. In the type ’Random’, the ran-

dom factor in changing operating points (a.k.a.,

changing factor) follows a standard uniform dis-

tribution. In the type ’TimeSeries’, the changing

factor follows a given time series curve. In the

type ’TimeSeriesRand’, the changing factor follows

a given time series curve plus randomness from a

standard uniform distribution.

data.curvePlot binary 0 Plot the time series curve for ’TimeSeries’ or ’Time-

SeriesRand’: 1 for yes, 0 for no.

data.fixRand binary 0 Fix randomness during data generation: 1 for yes,

0 for no.

data.fixSeed integer 88 Seed to fix randomness.

load.distribution character ’uniform’ The distributon of the randomness for the loading;

it can be ’uniform’ or ’normal’.

load.amplifyFactor float 0.9 Factor to multiply each nodal load to regulate load

level globally.

load.smallValue float 0.05 Value added to each nodal load to avoid all-zero

power injections.

CHAPTER 3. DATA GENERATING AND PROCESSING 19

Table 3.1 continued from previous page

Parameter Format Default Description

load.upperRange float 1.2 Upper range for nodal load change in ’Random’

mode. When the normal distribution is chosen,

the randomness can only be tuned but not strictly

limited by the bound owing to the nature of the

distribution.

load.lowerRange float 0.8 Lower range for nodal load change in ’Random’

mode. When the normal distribution is chosen,

the randomness can only be tuned but not strictly

limited by the bound owing to the nature of the

distribution.

load.upperRangeTime float 1.05 Upper range for nodal load change in ’TimeSeries-

Rand’ mode. When the normal distribution is cho-

sen, the randomness can only be tuned but not

strictly limited by the bound owing to the nature

of the distribution.

load.lowerRangeTime float 0.95 Lower range for nodal load change in ’TimeSeries-

Rand’ mode. When the normal distribution is cho-

sen, the randomness can only be tuned but not

strictly limited by the bound owing to the nature

of the distribution.

load.baseLoadCurve array [1.0300,...,1.0500] Default daily base load curve with 48 points for

’TimeSeries’ or ’TimeSeriesRand’, i.e., the time se-

ries curve aforementioned. This curve was modified

from a national half-hourly load curve of France on

Aug.16, 2023.

load.timeStart character ’19:00’ Start for the time window of interest when using

’TimeSeries’ or ’TimeSeriesRand’ to generate data.

Half-hour resolution, i.e., only formats like ’5:00’

and ’23:30’ are accepted.

load.timeEnd character ’22:00’ End for the time window of interest when using

’TimeSeries’ or ’TimeSeriesRand’ to generate data.

Half-hour resolution, i.e., only formats like ’5:00’

and ’23:30’ are accepted.

voltage.varyIndicator binary 0 Randomly change voltage magnitudes of PV buses:

1 for yes, 0 for no.

voltage.distribution character ’uniform’ The distributon of the randomness for the voltage

magnitudes; it can be ’uniform’ or ’normal’.

CHAPTER 3. DATA GENERATING AND PROCESSING 20

Table 3.1 continued from previous page

Parameter Format Default Description

voltage.upperRange float 0.05 Upper range for random voltage magnitude change

at PV buses. When the normal distribution is cho-

sen, the randomness can only be tuned but not

strictly limited by the bound owing to the nature

of the distribution.

voltage.lowerRange float -0.05 Lower range for random voltage magnitude change

at PV buses. When the normal distribution is cho-

sen, the randomness can only be tuned but not

strictly limited by the bound owing to the nature

of the distribution.

voltage.refAngle float 10 Small value added to the reference angle of the slack

bus to avoid all-zero angles.

gen.varyIndicator binary 1 Changes power generations simultaneously with

the change in load in ’acpf’: 1 for yes, 0 for no.

For ’acopf’ or ’dcopf acpf’, power generations will

change automatically to meet the demand (and

power loss).

gen.smallValue float 0.08 Value added to each generator output in ’acpf’

when changing power generations, in order to avoid

all-zero power generations.

3.1.2 Output

As shown in the examples previously, the output from daline.generate is data, which is organized into
a structured format to facilitate ease of access. The dataset is segmented into three primary components:
train, test, and mpc.

• Training Dataset (train): This field contains a diverse array of data points tailored for the training
process of linear power flow models. It covers various conditions reflective of real-world power system
scenarios, based on users’ settings when calling daline.generate.

• Testing Dataset (test): Aimed at linear model testing, this field includes data points essential for
assessing model performance. The data points here are structured in the same way as the data
points in the train field.

• MATPOWER Case Data (mpc): Comprising detailed power system configuration information, in-
cluding buses, lines, generators, and loads.

Below is a hierarchical overview of the structure of data, including primary fields and their respective
sub-fields (Ntrain: number of training data points, i.e., num.trainSample; Ntest: number of testing data
points, i.e., num.testSample; Nbus: number of buses in the power system; Nline: number of lines in the
system). The nodal data are arranged in ascending order based on the bus indices from 1 to Nbus, and
the branch data are organized according to the line indices from 1 to Nline.

CHAPTER 3. DATA GENERATING AND PROCESSING 21

• data.train

– data.train.P (Ntrain ×Nbus matrix): nodal active power injections;

– data.train.Q (Ntrain ×Nbus matrix): nodal reactive power injections;

– data.train.Vm (Ntrain ×Nbus matrix): nodal voltage magnitudes;

– data.train.Vm2 (Ntrain ×Nbus matrix): square of nodal voltage magnitudes;

– data.train.Va (Ntrain ×Nbus matrix): nodal voltage angle;

– data.train.PF (Ntrain ×Nline matrix): active branch flows from the “From-bus”;

– data.train.PT (Ntrain ×Nline matrix): active branch flows from the “To-bus”;

– data.train.QF (Ntrain ×Nline matrix): reactive branch flows from the “From-bus”;

– data.train.QT (Ntrain ×Nline matrix): reactive branch flows from the “To-bus”;

• data.test

– data.test.P (Ntest ×Nbus matrix): nodal active power injections;

– data.test.Q (Ntest ×Nbus matrix): nodal reactive power injections;

– data.test.Vm (Ntest ×Nbus matrix): nodal voltage magnitudes;

– data.test.Vm2 (Ntest ×Nbus matrix): square of nodal voltage magnitudes;

– data.test.Va (Ntest ×Nbus matrix): nodal voltage angle;

– data.test.PF (Ntest ×Nline matrix): active branch flows from the “From-bus”;

– data.test.PT (Ntest ×Nline matrix): active branch flows from the “To-bus”;

– data.test.QF (Ntest ×Nline matrix): reactive branch flows from the “From-bus”;

– data.test.QT (Ntest ×Nline matrix): reactive branch flows from the “To-bus”;

• data.mpc (the standard MATPOWER case data)

3.1.3 Examples

>> data = daline.generate('case.name', 'case118', 'data.program', 'acpf', 'data.
baseType', 'TimeSeriesRand');

>> opt = daline.setopt('case.name', 'case39', 'num.trainSample', 500, 'num.testSample',
300);

>> data = daline.generate(opt);

% Assume the user already loaded a pre-defined mpc

>> opt = daline.setopt('case.mpc', mpc, 'load.timeStart', '7:00', 'load.timeEnd', '9:30
');

>> data = daline.generate(opt);

3.1.4 Remarks

• When enabling parallel computation for the first time, MATLAB may require additional time
to initialize the parallel computing toolkit (if already installed). Yet, for the subsequent data
generation, parallel computation can significantly speed up the data generation process. E.g., it
only takes several seconds to generate 500 scenarios for a 1354-bus system on a personal laptop with
a M1 chip (8-core) and 16 GB RAM.

CHAPTER 3. DATA GENERATING AND PROCESSING 22

• Some data-driven linearization methods cannot handle all-zero columns in the training dataset.
Using load.smallValue, voltage.refAngle, and gen.smallValue can avoid such situations.

• Solving ACOPF with fixed PV voltage magnitudes presents significant challenges and is prone to a
high incidence of failures.

3.2 Data Processing

Daline can process both synthetically generated datasets byDaline itself and external datasets provided
by users. It offers the ability to introduce or filter data noise and outliers, and normalize data, which are
crucial for either testing the robustness of models, cleaning the data beforehand, or standardizing the
range of data features.

3.2.1 Check Data Format (Automatic)

The required input for all data processing function wrappers within Daline is a structure, referred to as
data, which must adhere to Daline’s standardized data format. Should the data structure be produced
by Daline itself, it inherently meets the necessary format specifications. However, if the data structure
is provided directly by users, its format will be automatically verified upon using any of Daline’s data
processing (as well as model training/testing) function wrappers. Specifically, the input data must be a
structure (struct in MATLAB) with the following primary fields:

• data.train

• data.test

• data.mpc (This should be a standard MATPOWER case [36])

Structure data.train should contain the following sub-fields:

• Mandatory Sub-fields:

– data.train.P (Ntrain ×Nbus matrix): nodal active power injections;

– data.train.Q (Ntrain ×Nbus matrix): nodal reactive power injections;

• Optional Sub-fields: At least one of the following:

– data.train.Vm (Ntrain ×Nbus matrix): nodal voltage magnitudes;

– data.train.Vm2 (Ntrain ×Nbus matrix): square of nodal voltage magnitudes;

– data.train.Va (Ntrain ×Nbus matrix): nodal voltage angle;

– data.train.PF (Ntrain ×Nline matrix): active branch flows from the “From-bus”;

– data.train.PT (Ntrain ×Nline matrix): active branch flows from the “To-bus”;

– data.train.QF (Ntrain ×Nline matrix): reactive branch flows from the “From-bus”;

– data.train.QT (Ntrain ×Nline matrix): reactive branch flows from the “To-bus”;

Structure data.test should contain the following sub-fields:

• Mandatory Sub-fields:

– data.test.P (Ntest ×Nbus matrix): nodal active power injections;

– data.test.Q (Ntest ×Nbus matrix): nodal reactive power injections;

• Optional Sub-fields: At least one of the following:

– data.test.Vm (Ntest ×Nbus matrix): nodal voltage magnitudes;

CHAPTER 3. DATA GENERATING AND PROCESSING 23

– data.test.Vm2 (Ntest ×Nbus matrix): square of nodal voltage magnitudes;

– data.test.Va (Ntest ×Nbus matrix): nodal voltage angle;

– data.test.PF (Ntest ×Nline matrix): active branch flows from the “From-bus”;

– data.test.PT (Ntest ×Nline matrix): active branch flows from the “To-bus”;

– data.test.QF (Ntest ×Nline matrix): reactive branch flows from the “From-bus”;

– data.test.QT (Ntest ×Nline matrix): reactive branch flows from the “To-bus”;

For interested readers only: the built-in function func_check_dataFormat ensures that the data
provided to the Daline toolbox adheres to the required standard format; an output of isValid equal
to 1 means that data has met the format validation criteria.

>> isValid = func_check_dataFormat(data);

3.2.2 Add Data Noise (daline.noise)

Daline can introduce white Gaussian noise, a general form of noise observed in electrical measurements.
This is facilitated through the daline.noise wrapper. The basic idea is directly adding small values
(following a Gaussian distribution with a zero mean) to the training and/or testing datasets, based on
the user’s configuration. The primary and mandatory argument of daline.noise is data that satisfies
the data format of Daline, as explained above. Usage examples are provided below, and the default
parameters for daline.noise, all of which are modifiable, are detailed in Table 3.2.

Table 3.2: Default Name-value Input Arguments for daline.noise.

Parameter Format Default Description

data.fixRand binary 0 Fixes randomness when introducing noise: 1 for
yes, 0 for no.: 1 for yes, 0 for no.

data.fixSeed integer 88 The seed used to fix the randomness in adding
noise.

noise.switchTrain binary 1 Activates adding noise to the training data: 0
for no, 1 for yes (1 by default when using da-

line.noise, but 0 by default when using da-

line.data).

noise.switchTest binary 0 Activates adding noise to the testing data: 0 for no,
1 for yes.

noise.SNR_dB float 45 The signal-to-noise ratio in dB for the added white
Gaussian noise, with 45 dB suggested by [37].

Examples

>> data = daline.noise(data, 'noise.switchTrain', 1, 'noise.SNR_dB', 46);

>> data = daline.noise(data, 'data.fixRand', 1, 'noise.switchTest', 1, 'noise.SNR_dB',
45);

CHAPTER 3. DATA GENERATING AND PROCESSING 24

>> opt = daline.setopt('noise.switchTrain', 1, 'noise.switchTest', 1, 'noise.SNR_dB',
45);

>> data = daline.noise(data, opt);

Remark

• When data.fixRand is set to 1, not only is the randomness fixed, but each measurement within a
sample — every data point in a row, for instance, within data.train.Vm — receives the same noise
value. This suggests a scenario where the data for the entire system is captured by a single device
at any given moment. However, this assumption may not accurately reflect real-world measurement
practices. Also, such an addition of noise does not significantly impact the training performance.
Hence, data.fixRand is 0 by default — in this case, each element within a row will be affected by
a unique instance of noise. This implies that variables within the system are measured by different
devices, which is a more realistic condition that has a greater influence on training performance.

3.2.3 Add Data Outliers (daline.outlier)

Daline also includes the capability to inject outliers into datasets, simulating anomalies that are oc-
casionally encountered in real-world data, especially in electrical measurements. This functionality is
provided by the daline.outlier wrapper. The core idea behind daline.outlier is manipulating orig-
inal data points by randomly applying multipliers defined by users to significantly amplify data values
relative to the rest of the dataset. The primary and mandatory argument for daline.outlier is data,
which must adhere to the data structure prescribed by Daline. Examples of how to use this feature
are demonstrated below, and the default, but adjustable, parameters for daline.outlier are outlined
in Table 3.3.

Examples

>> data = daline.outlier(data, 'outlier.switchTrain', 1, 'outlier.percentage', 2.5);

>> opt = daline.setopt('outlier.switchTrain', 1, 'outlier.switchTest', 1, 'outlier.
factor', 3);

>> data = daline.outlier(data, opt);

CHAPTER 3. DATA GENERATING AND PROCESSING 25

Table 3.3: Default name-value input arguments for daline.outlier

Parameter Format Default Description

data.fixRand binary 0 Fixes randomness when introducing data outliers:
1 for yes, 0 for no.

data.fixSeed integer 88 The seed used to fix the randomness in adding data
outliers.

outlier.switchTrain binary 1 Activates adding outliers to the training data: 0
for no, 1 for yes (1 by default when using da-

line.outlier, but 0 by default when using da-

line.data).

outlier.switchTest binary 0 Activates adding outliers to the testing data: 0 for
no, 1 for yes.

outlier.percentage float 5 The percentage of data points to be affected by
outliers (here 5 means 5%), applied randomly to
each variable. Care should be taken: even a small
percentage can significantly impact the data set.

outlier.factor float 2 The multiplier applied to the original measure-
ments to generate outliers.

Remark

• Take outlier.percentage = 2.5 as an example. When data.fixRand is set to 1, not only is the
randomness fixed, but it also means randomly selecting 2.5% of the rows within the training/testing
dataset and amplifying their values simultaneously to simulate outliers (indicating a single-device
data collection for the whole grid). When data.fixRand is set to 0 (default value), 2.5% of elements
within each column of the training dataset will be randomly selected and multiplied to create outliers
(indicating grid variables are measured by different devices); while 2.5% seems small, the cumulative
effect across multiple columns significantly amplifies the likelihood of a row being classified as an
outlier, due to the increased chance of encountering at least one amplified element per row.

3.2.4 Filter Data Noise (daline.denoise)

Daline provides a tool for noise reduction in datasets through the daline.denoise wrapper, employing
Kalman filtering. Kalman filtering is renowned for its effectiveness in filtering out noise from data. Again,
the indispensable argument for daline.denoise is data, which requires agreement to the data format
specified by Daline. This section will provide examples to illustrate the usage of this feature. The
limitations of daline.denoise are explained here as well. In addition, the modifiable default parameters
of daline.denoise are detailed in Table 3.4.

Examples

>> data = daline.denoise(data, 'filNoi.switchTrain', 1, 'filNoi.useARModel', false);

>> opt = daline.setopt('filNoi.switchTrain', 1, 'filNoi.useARModel', false, 'filNoi.
zeroInitial', 1);

>> data = daline.denoise(data, opt);

CHAPTER 3. DATA GENERATING AND PROCESSING 26

Remarks and limitations

• The configuration for the state transition matrix is crucial for noise filtering, as it reflects the system’s
evolution over time. The challenge lies in accurately capturing the dynamics and relationships
between observations. Users can opt for a simple identity matrix by setting filNoi.useARModel to
false, assuming independence among observations, or model the dynamics using an AutoRegressive
(AR) model by setting filNoi.useARModel to true. However, each approach has its limitations in
realistically representing time series data.

• Setting the process noise covariance, i.e., the parameter filNoi.proNoiseLevel, is a complex
task due to its representation of unmodeled system dynamics or external disturbances, which are
inherently uncertain and might not be directly observable. Manual tuning, though time-consuming,
may lead to improved accuracy.

• The initialization of the estimated state is a delicate matter. While starting with a zero estimate is
common, e.g., in [18, 38], it may not be accurate, particularly if the true initial state significantly
deviates from zero. This can lead to a transient period where the filter adjusts to the actual state.
Opting for the first observation as the initial estimate may mitigate this issue, which is also suggested
here.

Table 3.4: Default name-value input arguments for daline.denoise.

Parameter Format Default Description

filNoi.switchTrain binary 1 Activates noise filtering for training data: 1 for yes
(1 by default when using daline.denoise, but 0 by
default when using daline.data), 0 for no.

filNoi.switchTest binary 0 Activates noise filtering for testing data: 1 for yes,
0 for no.

filNoi.orderNum integer 5 The order number of the AutoRegressive model to
estimate the data dynamics in the Kalman filter.
A higher order allows for capturing more complex
dynamics but increases computational complexity.

filNoi.est_dB float 45 Represents the estimated signal noise level in deci-
bels, which is converted to power to set the matrix
of measurement noise covariance, influencing the
filter’s sensitivity to measurement noise.

filNoi.useARModel boolean false Whether to use the AutoRegressive model for cap-
turing data dynamics: true to use, false for an iden-
tity matrix as the transition matrix, assuming each
observation evolves independently [38].

filNoi.proNoiseLevel integer 100 Defines the magnitude of the matrix of process
noise covariance, which models the inherent uncer-
tainties or unmodeled dynamics in the system. A
higher value indicates greater uncertainty in the
system’s evolution.

filNoi.zeroInitial binary 0 Decides the initial state estimate in the Kalman fil-
ter. If set to 1, the initial estimate is zero, which
may lead to a transient adjustment period. If 0,
the initial estimate uses the first observation, po-
tentially providing a closer starting point to the
true state.

3.2.5 Filter Data Outliers (daline.deoutlier)

Daline also provides a mechanism for outlier detection and removal through the daline.deoutlier

CHAPTER 3. DATA GENERATING AND PROCESSING 27

wrapper. The primary argument for daline.deoutlier is data, which must conform to the data format
specified by Daline. Below are examples to demonstrate the use of this wrapper. The default, yet
adjustable, parameters for daline.deoutlier are presented in Table 3.5.

Examples

>> data = daline.generate('case.name', 'case118', 'data.program', 'acpf', 'data.
baseType', 'TimeSeriesRand');

>> data = daline.outlier(data, 'outlier.switchTrain', 1, 'outlier.factor', 2, '
outlier.percentage', 0.5);

>> data = daline.deoutlier(data, 'filOut.switchTrain', 1, 'filOut.method', 'quartiles
', 'filOut.tol', 100);

>> data = daline.generate('case.name', 'case118', 'data.program', 'acpf', 'data.
baseType', 'TimeSeriesRand');

>> data = daline.outlier(data, 'outlier.switchTrain', 1, 'outlier.factor', 2, '
outlier.percentage', 0.5);

>> opt = daline.setopt('filOut.switchTrain', 1, 'filOut.method', 'quartiles');
>> data = daline.deoutlier(data, opt);

Table 3.5: Default name-value input arguments for daline.deoutlier.

Parameter Format Default Description

filOut.switchTrain binary 1 Activates outlier filtering for training data: 1 for
yes (1 by default when using daline.deoutlier,
but 0 by default when using daline.data), 0 for
no.

filOut.switchTest binary 0 Activates outlier filtering for training data: 1 for
yes, 0 for no.

filOut.method string ’quartiles’ Specifies the method for outlier detection: options
include ’median’, ’mean’, ’quartiles’, and ’grubbs’.

filOut.tol float 5 Sets the tolerance level for outlier detection. A
higher value results in fewer detected outliers. This
value must be between 0 and 1 when method is
’grubbs’.

Remarks and limitations

• The functionality of daline.deoutlier is primarily built upon MATLAB’s isoutlier function.
This underlying approach ensures a robust and well-tested method for identifying and filtering
outliers in the dataset.

• The parameter filOut.method allows users to select the criterion supported by isoutlier for
outlier detection based on statistical measures. Each option corresponds to a different statistical
method for defining what constitutes an outlier:

– ’median’: Outliers are identified based on their deviation from the median of the data.

CHAPTER 3. DATA GENERATING AND PROCESSING 28

– ’mean’: Outliers are identified based on their deviation from the mean of the data.

– ’quartiles’: Outliers are identified based on the interquartile range, which is the range be-
tween the first and third quartiles. This method is less affected by extreme values.

– ’grubbs’: This method applies Grubbs’ test for outliers, assuming the data is normally dis-
tributed.

• The filOut.tol parameter is used as the ThresholdFactor in the isoutlier function. It deter-
mines the sensitivity of the outlier detection process:

– A higher filOut.tol value increases the threshold for detecting outliers, thus reducing the
number of data points identified as outliers.

– Conversely, a lower filOut.tol value makes the outlier detection more sensitive, potentially
increasing the number of data points flagged as outliers.

• If the outliers in data are generated by daline.outlier without fixing the randomness, it’s worth
noting that even a 2.5% outlier rate can result in a substantial quantity of outliers due to their
independent and accumulative impact across various columns, as mentioned earlier. These outliers
can be detected and removed by daline.outlier, leaving only a small number (or even zero) of
data points.

3.2.6 Normalize Data (daline.normalize)

Daline offers a feature for data normalization through the daline.normalize wrapper, specifically
employing unit energy normalization. This process ensures that each feature within the dataset has a
consistent scale, which is crucial for many data processing and machine learning algorithms. The primary
input for daline.normalize is data, which must be in the structured format as defined by Daline.
The following examples illustrate the application of this wrapper, and the configurable parameter for
daline.normalize is detailed in Table 3.6.

Examples

>> data = daline.normalize(data);

Remarks

• Unit energy normalization is a process where each variable in the dataset is scaled such that the
sum of the squares of its values equals one. This is achieved by dividing each value by the square
root of the sum of the squares of all values in that variable. In other words, this normalization
is performed independently for each variable, utilizing distinct scaling factors derived from their
respective distributions. As a result, each variable is transformed to have unit energy, but the
relative scales between different variables are altered.

• A consequence of applying unit energy normalization is that the original physical relationships among
variables might not be preserved. The normalization changes the scale of each variable differently,
which can affect the interpretation of these variables in relation to one another. Hence, the data
normalized by daline.normalize may not be suitable for data-driven linearization methods that
incorporate the physical knowledge of the power flow model. When calling these linearization
methods in Daline, users should use the original data.

• In datasets, the presence of columns comprised entirely of zeros (all-zero columns) can lead to these
columns being transformed into NaN (Not a Number) following unit energy normalization. This

CHAPTER 3. DATA GENERATING AND PROCESSING 29

phenomenon arises because the normalization process involves division by a factor, which, for all-
zero columns, is inherently zero, thus leading to undefined values. Situations that might result
in all-zero columns include but are not limited to: instances where a bus maintains nodal active
power balance over a certain duration or when the reference angle at the slack bus is designated
as zero. To avoid this issue, users can tune the parameters load.smallValue, gen.smallValue,
and voltage.refAngle, as outlined in Table 3.1, which are designed to eliminate all-zero columns.
Nonetheless, it is crucial to bear in mind that the emergence of NaN values in normalized data
warrants an initial examination for all-zero columns in the raw dataset.

Table 3.6: Default name-value input argument for daline.normalize.

Parameter Format Default Description

norm.switch binary 1 Activities normalization for both the training and
testing datasets: 1 for yes (1 by default when using
daline.normalize, but 0 by default when using
daline.data), 0 for no.

3.3 All-in-one Command for Data Generating/Processing (daline.data)

For users seeking a more streamlined approach than utilizing individual wrappers, Daline offers da-

line.data, which consolidates all data generation and processing functionalities. Illustrated below are
some examples.

Examples

>> data = daline.data('case.name', 'case118', 'num.trainSample', 500, 'num.testSample',
300, 'data.program', 'acpf', 'data.baseType', 'TimeSeriesRand', 'noise.switchTrain'
, 1, 'outlier.switchTrain', 1, 'norm.switch', 1);

>> opt = daline.setopt('case.name', 'case118', 'num.trainSample', 500, 'num.testSample
', 300, 'data.program', 'acpf', 'data.baseType', 'TimeSeriesRand', 'noise.
switchTrain', 1, 'outlier.switchTrain', 1, 'norm.switch', 1);

>> [data, X, Y] = daline.data(opt);

Remarks

• The configurable parameters for daline.data contain all those detailed in Tables 3.1 to 3.6.

• daline.data initiates by a mandatory process: generating synthetic data. Yet, other functionalities
related to data processing can be turned off.

• When all functionalities are activated, the sequence of operations is as follows: data generation,
addition of data outliers, addition of data noise, filtering of data outliers, filtering of data noise, and
data normalization.

• Beyond the standard output data, daline.data also offers two optional outputs: X and Y, both of
which are structured for ease of use. The X output contains data for all known variables, whereas

CHAPTER 3. DATA GENERATING AND PROCESSING 30

Y include data for all unknown variables. Their structures are explained below in detail. Note the
numbers of PV buses, PQ buses, reference buses, and branches are defined as NPV , NPQ, Nref , and
Nline, respectively.

Independent Variables for Training: X.train

• X.train.P: Ntrain × (NPV +NPQ) matrix, contains known active power injections at PV and PQ
buses.

• X.train.Q: Ntrain ×NPQ matrix, contains known reactive power injections at PQ buses.

• X.train.Vm: Ntrain×(NPV +Nref) matrix, contains known voltage magnitudes at PV and reference
buses.

• X.train.Vm2: Ntrain × (NPV + Nref) matrix, contains known squared voltage magnitudes at PV
and reference buses.

• X.train.Va: Ntrain ×Nref matrix, contains the known voltage angle(s) at the reference bus(es).

• X.train.PQ: Ntrain × (NPV + 2 × NPQ) matrix, contains all known active and reactive power
injections at PV and PQ buses.

• X.train.all: Ntrain × (2 × (NPV +NPQ) +Nref) matrix, contains all known variables including
active and reactive power injections, voltage magnitudes, and voltage angles.

• X.train.all2: Ntrain×(2×(NPV +NPQ)+Nref) matrix, similar to X.train.all but with voltage
magnitudes replaced by their squares.

Independent Variables for Testing: X.test

• X.test.P: Ntest × (NPV + NPQ) matrix, contains known active power injections at PV and PQ
buses.

• X.test.Q: Ntest ×NPQ matrix, contains known reactive power injections at PQ buses.

• X.test.Vm: Ntest × (NPV +Nref) matrix, contains known voltage magnitudes at PV and reference
buses.

• X.test.Vm2: Ntest × (NPV +Nref) matrix, contains known squared voltage magnitudes at PV and
reference buses.

• X.test.Va: Ntest ×Nref matrix, contains the known voltage angle(s) at the reference bus(es).

• X.test.PQ: Ntest×(NPV +2×NPQ) matrix, contains all known active and reactive power injections
at PV and PQ buses.

• X.test.all: Ntest×(2×(NPV +NPQ)+Nref) matrix, contains all known variables including active
and reactive power injections, voltage magnitudes, and voltage angles.

• X.test.all2: Ntest × (2× (NPV +NPQ) +Nref) matrix, similar to X.test.all but with voltage
magnitudes replaced by their squares.

Dependent Variables for Training: Y.train

• Y.train.Vm: Ntrain ×NPQ matrix, contains unknown voltage magnitudes at PQ buses.

• Y.train.Vm2: Ntrain ×NPQ matrix, contains unknown squared voltage magnitudes at PQ buses.

• Y.train.Va: Ntrain × (NPV +NPQ) matrix, contains unknown voltage angles at PV and PQ buses.

• Y.train.PF: Ntrain ×Nline matrix, contains unknown active branch flows from the “From-bus”;

CHAPTER 3. DATA GENERATING AND PROCESSING 31

• Y.train.PT: Ntrain ×Nline matrix, contains unknown active branch flows from the “To-bus”;

• Y.train.QF: Ntrain ×Nline matrix, contains unknown reactive branch flows from the “From-bus”;

• Y.train.QT: Ntrain ×Nline matrix, contains unknown reactive branch flows from the “To-bus”;

• Y.train.P: Ntrain ×Nref matrix, contains the unknown active power injection(s) at the reference
bus(es).

• Y.train.Q: Ntrain× (NPV +Nref) matrix, contains unknown reactive power injection(s) at PV and
reference buses.

• Y.train.all: Ntrain × (2NPQ + 2NPV + 4Nline + 2Nref) matrix, contains all unknown variables,
including voltage magnitudes, voltage angles, active and reactive power flows, and active and reactive
power injections.

• Y.train.all2: Ntrain× (2NPQ+2NPV +4Nline+2Nref) matrix, similar to Y.train.all but with
voltage magnitudes replaced by their squares.

• Y.train.V: Ntrain×(2NPQ+NPV) matrix, contains all the unknown voltage magnitudes and angles
for PQ and PV buses.

• Y.train.V2: Ntrain × (2NPQ + NPV) matrix, similar to Y.train.V but includes squared voltage
magnitudes for PQ buses.

• Y.train.flow: Ntrain × 4Nline matrix, contains all the unknown active and reactive power flows in
both directions.

Dependent Variables for Testing: Y.test

• Y.test.Vm: Ntest ×NPQ matrix, contains unknown voltage magnitudes at PQ buses.

• Y.test.Vm2: Ntest ×NPQ matrix, contains unknown squared voltage magnitudes at PQ buses.

• Y.test.Va: Ntest × (NPV +NPQ) matrix, contains unknown voltage angles at PV and PQ buses.

• Y.test.PF: Ntest ×Nline matrix, contains unknown active branch flows from the “From-bus”;

• Y.test.PT: Ntest ×Nline matrix, contains unknown active branch flows from the “To-bus”;

• Y.test.QF: Ntest ×Nline matrix, contains unknown reactive branch flows from the “From-bus”;

• Y.test.QT: Ntest ×Nline matrix, contains unknown reactive branch flows from the “To-bus”;

• Y.test.P: Ntest ×Nref matrix, contains the unknown active injection(s) at the reference bus(es).

• Y.test.Q: Ntest × (NPV +Nref) matrix, contains unknown reactive power injection(s) at PV and
reference buses.

• Y.test.all: Ntest × (2NPQ + 2NPV + 4Nline + 2Nref) matrix, contains all unknown variables,
including voltage magnitudes, voltage angles, active and reactive power flows, and active and reactive
power injections.

• Y.test.all2: Ntest × (2NPQ + 2NPV + 4Nline + 2Nref) matrix, similar to Y.test.all but with
voltage magnitudes replaced by their squares.

• Y.test.V: Ntest × (2NPQ +NPV) matrix, contains all the unknown voltage magnitudes and angles
for PQ and PV buses.

• Y.test.V2: Ntest × (2NPQ +NPV) matrix, similar to Y.test.V but includes squared voltage mag-
nitudes for PQ buses.

• Y.test.flow: Ntest × 4Nline matrix, contains all the unknown active and reactive power flows in
both directions.

Chapter 4

Model Fitting and Testing

Daline aims to identify an optimal linear relationship between a set of predictors, X ∈ RNs×Nx , and
responses, Y ∈ RNs×Ny , where each set comprises Ns measurements (i.e., num.trainSample). The
relationship between them is parameterized by a coefficient matrix generally denoted by β. In Daline,
the linear relationships take one of the following forms

Type 1: Y =Xβ

Type 2: Y =Xβ(k), k = 1 · · ·K

Type 3: Y = ϕ(X)βϕ

Type 1 is a single linear model with coefficient matrix β ∈ RNx×Ny . Type 2 is a piecewise linear model,
where β(k) ∈ RNx×Ny is the coefficient matrix for segment k, andK denotes the number of total segments.
Type 3, parameterized by βϕ ∈ RNϕ×Ny , describes the linear relationship between Y and ϕ(X), where

ϕ : RNx → RNϕ is a mapping function.

Each of the model fitting methods in Daline uses a training dataset of known X and Y to get
estimates of the coefficient matrix/matrices. These estimates are denoted in the following documentation
with a “hat” sign ∧, e.g., β̂ represents the estimated coefficient matrix of Model 1. By applying the
estimated linear coefficients to a test dataset of X, predictions of Y , denoted by Ŷ , can be derived.

All the supported methods and their abbreviations are listed in Table 2.1. The default model types
for these methods, along with their generalizability and applicability to specific scenarios, are detailed
in Table 4.1 (see our simulation work in [3] for the detailed analysis and discussion of Table 4.1). Note
that users can change the type of the resulting models through settings, and any such changes will be
reflected in the outputted model, as explained in Table 4.3.

32

CHAPTER 4. MODEL FITTING AND TESTING 33

Table 4.1: Default model types, generalizability and applicability of the linearization approaches

Approach Goal
Model
Type

Predictor
Generalizability

Response
Generalizability

Multicollinearity
Applicability

Zero Predictor
Applicability

Constant Predictor
Applicability

Normalization
Applicability

LS Build 1 Arbitrary Arbitrary × × ✓ ✓

LS_SVD Build 1 Arbitrary Arbitrary × ✓ ✓ ✓

LS_COD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_HBLD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_HBLE Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_TOL Build 1 Arbitrary Arbitrary × ✓ ✓ ✓

LS_CLS Build 1 Arbitrary Arbitrary × × ✓ ✓

LS_LIFX Build 3 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_LIFXi Build 3 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_WEI Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_REC Update 1 Arbitrary Arbitrary × × ✓ ✓

LS_REP Update 1 Arbitrary Arbitrary × × ✓ ✓

LS_PIN Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_PCA Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_GEN Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LS_HBW Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PLS_SIM Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PLS_SIMRX Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PLS_BDLopen Build 1 P,Q Vm, V a ✓ × × ✓

PLS_BDL Build 1 V, P,Q Arbitrary ✓ × × ✓

PLS_BDLY2 Build 1 V, P,Q Arbitrary ✓ × × ✓

PLS_REC Update 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PLS_RECW Update 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

RR Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

RR_VCS Build 3 V 2, P,Q V 2, Rij , Cij ✓ ✓ ✓ ×
RR_KPC Build 2 Arbitrary Arbitrary ✓ ✓ ✓ ✓

RR_WEI Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

SVR Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

SVR_CCP Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

SVR_POL Build 3 Arbitrary Arbitrary ✓ ✓ ✓ ✓

SVR_RR Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LCP_BOX Build 1 P,Q V, θ ✓ ✓ ✓ ×
LCP_BOXN Build 1 P,Q V, θ ✓ ✓ ✓ ×
LCP_COU Build 1 V, θ PF, PT, QF, QT ✓ ✓ ✓ ×
LCP_COU2 Build 1 V, θ PF, PT, QF, QT ✓ ✓ ✓ ×
LCP_COUN Build 1 V, θ PF, PT, QF, QT ✓ ✓ ✓ ×
LCP_COU2N Build 1 V, θ PF, PT, QF, QT ✓ ✓ ✓ ×
LCP_JGD Build 1 P,Q V, θ ✓ ✓ ✓ ×
LCP_JGDN Build 1 P,Q V, θ ✓ ✓ ✓ ×
DRC_XM Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

DRC_XYM Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

DRC_XYD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

DC_LS Build 1 P θ ✓ ✓ ✓ ×
DLPF_C Build 1 V, θ, P,Q V, θ, PF, QF ✓ ✓ ✓ ×
PLS_CLS Build 2 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PLS_NIP Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

DC Build 1 P θ ✓ ✓ ✓ ×
PTDF Build 1 P PF ✓ ✓ ✓ ×
TAY Build 1 P,Q V, θ ✓ ✓ ✓ ×
DLPF Build 1 V, θ, P,Q V, θ, PF, QF ✓ ✓ ✓ ×

PLS_REP Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

QR Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

LD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PIN Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

SVD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

COD Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

PCA Build 1 Arbitrary Arbitrary ✓ ✓ ✓ ✓

Terminology: The term“build” refers to the method designed to construct a linear model from a static, historical dataset of electrical
measurements. Conversely, “update” denotes the strategy to refine an existing linear model by progressively incorporating new
measurements. Furthermore, models 1, 2, and 3 align with the model classifications outlined in Part I of this tutorial; refer to the
Problem Formulation part in Section 1 of [2] for more details.

CHAPTER 4. MODEL FITTING AND TESTING 34

4.1 All-in-one Command for Model Fitting/Testing (daline.fit)

In Daline, model fitting and testing is executed by running the daline.fit wrapper with a data struct
containing the training and test datasets as the first argument (data). Again, data must adhere to
Daline’s standardized data format, as detailed in Section 3.2.1 (the format of data will be automati-
cally verified by daline.fit). Eventually, daline.fit returns the fitted model, together with model
predictions, errors, and other relevant information, in the resulting model struct.

>> model = daline.fit(data);

Table 4.2 lists the possible input and output variables that X and Y , respectively, can contain, while
Table 4.3 details the fields included in the daline.fit model object. Note that it is possible for bus-type
variables to appear both in model.predictorList and model.responseList, since they refer to different
buses in each.

Table 4.2: Possible predictor and response variables for DPFL models.

Predictors Responses

1 (corresponding to the constant value in the linear model) Vm of PQ buses

Vm of PV, slack buses Vm2 of PQ buses

Vm2 of PV, slack buses Va of PV, PQ buses

Va of slack bus P of slack bus

P of PV, PQ buses Q of slack bus

Q of PQ buses PF of all branches

PT of all branches

QF of all branches

QT of all branches

Following after the data positional argument, daline.fit also accepts optional name-value argu-
ments. These can be passed to the function in any order, failing which, the default values are used. Some
general parameters that are not specific to linearization algorithms are given in Table 4.4. Methods may
have access to additional name-value options: if these are shared with other methods belonging to the
same function class as them, they are listed at the start of each section of the said function class in the
documentation below; if they are method-specific, they are listed under the Additional inputs subsection
of that method.

>> model_A = daline.fit(data, 'method.name', 'RR', 'variable.predictor', {'P', 'Vm2'}, '
RR.lambdaInterval', 0:1e-3:0.02);

% equivalent alternative

>> opt = daline.setopt('method.name', 'RR', 'variable.predictor', {'P', 'Vm2'}, 'RR.
lambdaInterval', 0:1e-3:0.02);

>> model_B = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 35

Table 4.3: Internals of daline.fit’s outputted model object.

Name Description

algorithm Specifies the Daline method that produced the model.

predictorList A cell array of the predictors used in X.

responseList A cell array of the responses contained in Y . Note that they refer only to the direct output
of the DPFL model, and may not be identical to all the variables predicted by the method.
For instance, the variables in responseList may require back-transformation to their original
coordinates. In another example, DCPF only predicts Va directly from linearisation. However,
its model also returns results for Vm, PF, PT, QF, and QT.

predictorIdx Lists the indices of the buses/branches from which each predictor variable is taken.

responseIdx Lists the indices of the buses/branches for which each response variable is generated.

Beta The Nx × Ny matrix β̂ fit by the algorithm. In the case of piecewise models, Beta returns
a cell array where each cell is an Nx × Ny matrix β̂(k) corresponding to a given linearized
segment.

error A struct containing several sub-fields. Each is a matrix with Ns rows, collecting the relative
errors for a type of predicted variable. The error of a single prediction i is calculated as∣∣∣ ŷi−yi

yi

∣∣∣. Note that one of the sub-fields of error is error.all, which integrates the errors of

all the predicted variables.

yPrediction A struct containing several sub-fields. Each is a matrix with Ns rows, collecting the predicted
values of a type of response variable, as the testing result of the linear model using the testing
dataset.

yTrue A struct containing several sub-fields. Each is a matrix with Ns rows, collecting the true
values of a type of response variable in the test dataset.

type Specifies the model type, where 1: single linear; 2: piecewise linear; 3: transformed linear.

note Specifies if back-transformation from Vm2 to Vm is performed. This happens when Vm2 is
included in opt.variable.response and opt.variable.Vm22Vm is set to 1. Most methods in
Daline support the note field.

CHAPTER 4. MODEL FITTING AND TESTING 36

Table 4.4: General name-value input arguments for daline.fit.

Parameter Format Default Description

method.name character ’QR’ The algorithm to be used for power flow lin-
earization. Choose one from the following
currently-supported methods: ’LS’, ’QR’, ’LD’,
’LS PIN’, ’PIN’, ’LS SVD’, ’SVD’, ’LS COD’,
’COD’, ’LS PCA’, ’PCA’, ’LS HBW’, ’LS HBLD’,
’LS HBLE’, ’LS GEN’, ’LS LIFX’, ’LS LIFXi’,
’LS TOL’, ’LS CLS’, ’LS WEI’, ’LS REC’,
’LS REP’, ’PLS SIM’, ’PLS SIMRX’, ’PLS NIP’,
’PLS BDL’, ’PLS BDLY2’, ’PLS BDLopen’,
’PLS REC’, ’PLS RECW’, ’PLS REP’, ’PLS CLS’,
’RR’, ’RR WEI’, ’RR KPC’, ’RR VCS’, ’SVR’,
’SVR POL’, ’SVR CCP’, ’SVR RR’, ’LCP BOXN’,
’LCP BOX’, ’LCP JGDN’, ’LCP JGD’,
’LCP COUN’, ’LCP COUN2’, ’LCP COU’,
’LCP COU2’, ’DRC XM’, ’DRC XYM’,
’DRC XYD’, ’DC’, ’DC LS’, ’DLPF’, ’DLPF C’,
’PTDF’, ’TAY’.

warning.switch binary 1 1: Turn warnings off for all methods, including par-
for loop workers; otherwise 0.

variable.predictor cell array {’P’ ’Q’, ’Vm2’, ’Va’} Selection of predictors, e.g., {’P’, ’Q’, ’Vm2’}, or
{’P’}.

variable.response cell array {’Vm2’, ’Va’, ’PF’,
’PT’, ’QF’, ’QT’, ’P’,

’Q’}

Selection of responses, e.g., {’PF’, ’PT’, ’QF’,
’QT’}, or {’Vm’}.

variable.Vm22Vm binary 1 1: Use Vm2 for training, but show the error, predic-
tion, and testing data of Vm instead of Vm2 in the
outputted model struct; otherwise 0.

Internally, daline.fit goes through the following steps:

1. Verifies the format of the inputted data struct according to the standard data format of Daline.

2. Collects option settings.

3. Generates both the training and the test X and Y matrices from data according to the vari-

able.predictor and variable.response arguments.

• Adds an intercept column to the Xs and, if requested, lifts their dimensions as well (see 4.2.12
for details on dimension lifting).

4. Implements the method called by daline.fit.

• Possibly carries out preliminary steps, such as further coordinate transformation of X, or
hyperparameter tuning.

• Performs linearization to acquire β̂ (model.Beta).

5. Applies β̂ to the X test data to get Ŷ .

6. Calculates prediction errors.

7. Summarizes model results.

Instead of running the daline.fit wrapper, a method can also be run directly by appending the
desired method.name to func_algorithm_ and running the resulting function in a similar way as with
daline.fit, except without the method.name name-value pair:

CHAPTER 4. MODEL FITTING AND TESTING 37

% linearizing using the least squares ('LS') method

>> model_A = func_algorithm_LS(data);

% equivalent to

>> model_B = daline.fit(data, 'method.name', 'LS');

Running the method functions as such skips the first two steps of the daline.fit process and is generally
not preferred unless the user would like to make changes to the base code of these functions. Nonetheless,
in the Examples subsections of each of the method descriptions in the following sections, they have been
provided as example code over daline.fit for illustrative brevity.

The background information in the More About subsections for each of the methods also assumes
basic knowledge of power flow linearisation and the classes of regression and optimization algorithms
used. Therefore, it focuses more on explaining the specifics of how each algorithm was implemented in
Daline. For a comprehensive theoretical reexamination and numerical comparison of various lineariza-
tion approaches, including their theories, capabilities, limitations, generalizability, applicability, actual
accuracy, and computational efficiency, refer to [2]-[3]. Users can also refer to the references listed in
each subsection for the technical details and examples of the linearization method demonstrated in that
subsection.

Additionally, as outlined below, numerous methods are designed to leverage parallel computing for
enhanced performance. When parallel computation is activated for the first time, MATLAB might take
extra time to initialize its parallel computing toolkit (assuming it is already installed). This initial delay
is worthwhile, as parallel computing significantly accelerates processing speeds (certainly, the actual gains
depend on the number of CPU cores available).

CHAPTER 4. MODEL FITTING AND TESTING 38

4.2 Least Squares Family

This class of functions covers the following algorithms:

• Ordinary least squares (LS)

• Ordinary least squares with generalized inverse (LS_PIN)

• Least squares with singular value decomposition (LS_SVD)

• Least squares with complete orthogonal decomposition (LS_COD)

• Least squares with principal component analysis (LS_PCA)

• Least squares with Huber loss function: a direct solution (LS_HBLD)

• Least squares with Huber loss function: an equivalent solution (LS_HBLE)

• Least squares with Huber weighting function (LS_HBW)

• Generalized least squares (LS_GEN)

• Total least squares (LS_TOL)

• Least squares with clustering (LS_CLS)

• Least squares with lifting dimension and Moore-Penrose inverse (LS_LIFX, LS_LIFXi)

• Least squares with programming using weights for observations (LS_WEI)

• Recursive least squares (LS_REC)

• Repeated least squares (LS_REP)

CHAPTER 4. MODEL FITTING AND TESTING 39

4.2.1 Ordinary Least Squares (LS)

Tips

• For this method to work, the predictor variables must all be linearly independent; i.e., the predictor
matrix must have full column rank. Otherwise, this method cannot generate the desired linear
power flow model owing to the data multicollinearity issue [2, 3].

Examples

>> model = daline.fit(data, 'method.name', 'LS');

>> model = daline.fit(data, 'method.name', 'LS', 'variable.predictor', {'P'}, 'variable
.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'LS', 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LS(data, opt);

More About

This method finds the coefficient matrix β by minimizing the sum of squared residuals

min
β

∥Y −Xβ∥22

which has the explicit solution

β̂ =
(
X⊤X

)−1
X⊤Y

4.2.2 Ordinary Least Squares with Generalized Inverse (LS_PIN)

Tips

• The generalized inverse can be applied even when X⊤X is singular. However, its use leads to
inevitable computational error in networks with PV buses [39].

• Refer to Section 4.9.3 for a comparison of this method’s performance with that of using the gener-
alized inverse directly.

CHAPTER 4. MODEL FITTING AND TESTING 40

Examples

>> model = daline.fit(data, 'method.name', 'LS_PIN');

>> model = daline.fit(data, 'method.name', 'LS_PIN', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'LS_PIN', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_PIN(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LS_PIN(data, opt);

More About

The generalized inverse (a.k.a. the Moore-Penrose pseudoinverse) is used in this method to find the
minimum L2 norm solution to a system of linear equations with infinite solutions. Specifically, the
generalized inverse is implemented in

β̂ =
(
X⊤X

)−1
X⊤Y

4.2.3 Least Squares with Singular Value Decomposition (LS_SVD)

Tips

• The pseudoinverse can be applied even when X⊤X is singular. However, its use leads to inevitable
computational error in networks with PV buses [39].

• Refer to Section 4.9.4 for a comparison of this method’s performance with that of using the singular
value decomposition directly.

Examples

>> model = daline.fit(data, 'method.name', 'LS_SVD');

>> model = daline.fit(data, 'method.name', 'LS_SVD', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

CHAPTER 4. MODEL FITTING AND TESTING 41

>> opt = daline.setopt('method.name', 'LS_SVD', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_SVD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LS_SVD(data, opt);

More About

This method factorizes the Gram matrix X⊤X ∈ RNx×Ns using the SVD X⊤X = UΣV ⊤, where U is
an Nx-by-Nx orthogonal matrix, Σ is an Nx-by-Ns matrix with singular values on its diagonal, and V ⊤

is an Ns-by-Ns orthogonal matrix. Its pseudoinverse is then implemented to find β̂ in

β̂ =
(
X⊤X

)−1
X⊤Y = (UΣV ⊤)−1X⊤Y

References

Zhentong Shao et al. “Data Based Linear Power Flow Model: Investigation of a Least-Squares Based
Approximation”. In: IEEE Transactions on Power Systems 36.5 (2021), pp. 4246–4258

4.2.4 Least Squares with Complete Orthogonal Decomposition (LS_COD)

Tips

• Complete orthogonal decomposition is a generalization of QR decomposition: when X⊤X is full
rank, Z becomes the identity matrix.

• Using complete orthogonal decomposition can not only address multicollinearity in the predictor
matrix X, but also speed up regression computations. This is because R̃ is an upper-triangular

matrix with fewer dimensions, rendering R̃
−1

easier to compute.

• Refer to Section 4.9.5 for a comparison of this method’s performance with that of using the complete
orthogonal decomposition directly.

Examples

>> model = daline.fit(data, 'method.name', 'LS_COD');

CHAPTER 4. MODEL FITTING AND TESTING 42

>> model = daline.fit(data, 'method.name', 'LS_COD', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'LS_COD', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_COD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LS_COD(data, opt);

More About

This method factorizes the Gram matrix X⊤X ∈ RNx×Ns using complete orthogonal decomposition to
get

X⊤X = Q̃


R̃ 0

0 0

Z⊤

where Q̃ ∈ RNx×Nx and Z ∈ RNx×Nx are both orthogonal matrices, and R̃ ∈ RNxr×Nxr is an upper-
triangular matrix. Its pseudoinverse is then implemented to find β̂ in

β̂ =
(
X⊤X

)−1
X⊤Y = Z


R̃

−1
0

0 0

 Q̃⊤
X⊤Y

References

Zhentong Shao et al. “Data Based Linear Power Flow Model: Investigation of a Least-Squares Based
Approximation”. In: IEEE Transactions on Power Systems 36.5 (2021), pp. 4246–4258

CHAPTER 4. MODEL FITTING AND TESTING 43

4.2.5 Least Squares with Principal Component Analysis (LS_PCA)

Additional inputs

Table 4.5: Table of parameters specific to least squares with principal component analysis and direct
principal component analysis.

Parameter Format Default Description

PCA.parallel binary 1 1: use parallel computation to speed up, otherwise
0

PCA.rank binary 0 1: Use the rank of X as the number of components;
0: use PCA.PerComponent.

PCA.PerComponent vector/float [40:10:80] Unit: %, i.e., the proportion of the number of prin-
cipal components w.r.t. the number of predictors.
If a vector is given, the toolbox will find the op-
timal percentage using cross-validation with paral-
lelization; if a scalar is given, the inputted value
will be used directly.

PCA.numFold integer 10 The number of folds for cross-validation tuning of
the number of principal components to be used.
This number must be divisible by the number of
training samples.

PCA.fixCV binary 1 1: Fix the random seed for partitioning data in
cross-validation; otherwise 0.

PCA.fixSeed integer 88 Random seed number for cross-validation partition-
ing.

Tips

• LS PCA is sensitive to variable scaling. For valid results, the predictor data are suggested to be
normalized.

• Cross-validation is helpful in determining a better number of principal components because us-
ing more principal components does not guarantee a higher predictor accuracy and may lead to
overfitting.

• When working with noisy data, the first few components found by PCA usually have a higher signal-
to-noise ratio than later components, since they exhibit the greatest variance. In contrast, the last
few principal components are often dominated by noise and can be dropped.

• The β̂ returned by LS PCA is not directly interpretable, as they are back-transformations of the

β̂
PCA

that were found by regressing on the principal components.

• Refer to Section 4.9.6 for a comparison of this method’s performance with that of using PCA directly.

Examples

>> model = daline.fit(data, 'method.name', 'LS_PCA');

CHAPTER 4. MODEL FITTING AND TESTING 44

>> model = daline.fit(data, 'method.name', 'LS_PCA', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5)

;

>> opt = daline.setopt('method.name', 'LS_PCA', 'variable.predictor', {'P'}, 'variable.
response', {'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_PCA(data, 'variable.predictor', {'P'}, 'variable.
response', {'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> opt = daline.setopt('variable.predictor', {'P'}, 'variable.response', {'PF', 'Vm'}, '
PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> model = func_algorithm_LS_PCA(data, opt);

More About

The underlying idea behind this method is to project the predictor matrix X onto a new orthonormal
basis; i.e., convert the features in the data into uncorrelated features (“principal components”) before
training. The covariance of X undergoes eigendecomposition as

Cov(X) =DΛD⊤

where D ∈ RNx×Nx consists of the eigenvectors of Cov(X), and Λ is a diagonal matrix of the correspond-
ing eigenvalues. Then, the least squares solution of the principal component regression model

min
β

∥Y −XDβPCA∥22

is given by

β̂
PCA

=
[
(XD)⊤(XD)

]−1
(XD)⊤Y (4.1)

and the linear coefficients of the original predictor data are found as

β̂ =Dβ̂
PCA

CHAPTER 4. MODEL FITTING AND TESTING 45

4.2.6 Least Squares with Huber Loss Function: a Direct Solution (LS_HBLD)

Additional inputs

Table 4.6: Table of parameters specific to least squares with Huber loss function: a direct solution.

Parameter Format Default Description

HBL.parallel binary 1 1: Use parallel computation; otherwise 0.

HBL.delta vector/float 0.02 The discrete range of the outlier tolerance, i.e.,
δHUB , for cross-validation, e.g., [0.02:0.002:0.03]. If
a scalar is given, then use it directly without tun-
ing.

HBL.initialGuess float 0 The initial guess for all values of β̂. In the LS_HBLD
subroutine, it is a scalar factor multiplied to a ones
vector to supply the x0 argument input when call-
ing fminunc.

HBL.directOptions function optimoptions
(’fminunc’, ’Display’,
’off’, ’Algorithm’,
’quasi-newton’);

The options argument input for calling fminunc

to solve the regression problem (’fminunc’ is built
in the MATLAB Optimization Toolbox).

HBL.numFold integer 5 The number of folds for cross-validation tuning of
δHUB . This number must be divisible by the num-
ber of training samples.

HBL.fixCV binary 1 1: Fix the random seed for partitioning data in
cross-validation; otherwise 0.

HBL.fixSeed integer 88 Random seed number for cross-validation partition-
ing.

Tips

• The Huber loss intends to handle data outliers, as this method avoids squared-error loss’ tendency
to over-emphasize observations with large residuals during model fitting. The resulting regression
problem can be solved efficiently as a convex program.

• Although the problem is convex, the quasi-Newton algorithm used by default in fminunc may not
be able to find the solution. It is recommended that the problem be solved by converting it to an
equivalent quadratic convex problem, as is done in func_algorithm_LS_HBLE in Section 4.2.7.

• Cross-validation for δHUB is not implemented if HBL.delta is a scalar. As δHUB functions as a
threshold to distinguish between inliers and outliers, its tuning is recommended.

• It is highly recommended to enable parallel computing mode, as it can markedly enhance computa-
tional efficiency, particularly when the auto-tuning feature for hyperparameters is engaged.

Examples

>> model = daline.fit(data, 'method.name', 'LS_HBLD');

CHAPTER 4. MODEL FITTING AND TESTING 46

>> model = daline.fit(data, 'method.name', 'LS_HBLD', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'HBL.delta', [0.04:0.005:0.06]);

>> opt = daline.setopt('method.name', 'LS_HBLD', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'HBL.delta', [0.04:0.005:0.06]);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_HBLD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'HBL.delta', [0.04:0.005:0.06]);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'HBL.delta', [0.04:0.005:0.06]);

>> model = func_algorithm_LS_HBLD(data, opt);

More About

The Huber loss function modifies the regression loss function, such that

β̂ = argmin
β

∑Ns

i=1

∑Ny

j=1
Hi(βj)

with

Hi(βj) =

ε
2
ij , ∥εij∥1 ≤ δHUB

δHUB
(
2∥εij∥1 − δHUB

)
, ∥εij∥1 > δHUB

(4.2)

where εij = yij − x⊤
i βj , ∥ · ∥1 denotes the ℓ1 norm, and δHUB ∈ R is a preset threshold.

References

Yitong Liu, Zhengshuo Li, and Yu Zhou. “Data-Driven-Aided Linear Three-Phase Power Flow Model for
Distribution Power Systems”. In: IEEE Transactions on Power Systems (2021)

CHAPTER 4. MODEL FITTING AND TESTING 47

4.2.7 Least Squares with Huber Loss Function: an Equivalent Solution (LS_HBLE)

Additional inputs

Table 4.7: Table of parameters specific to least squares with Huber loss function: an equivalent solution

Parameter Format Default Description

HBL.parallel binary 1 1: Use parallel computation; otherwise 0.

HBL.programType character ’indivi’ ’whole’ puts all responses (i.e., the number of
columns in Y) into one optimization program to
solve for all β̂ at once; ’indivi’ solves for β̂ individu-
ally by building one optimization program for each
response.

HBL.language character ’yalmip’ Optimization toolbox to formulate the program-
ming problem. Choose between ’cvx’ or ’yalmip’.

HBL.solver character ’fmincon’ Solver options; choose amongst ’fmincon’, ’quad-
prog’, ’Gurobi’ (’quadprog’ and ’fmincon’ are
built in the MATLAB Optimization Toolbox; for
’Gurobi’, you need to install it manually).

HBL.cvxQuiet binary 1 1: Suppress CVX output in the command window;
otherwise 0.

HBL.yalDisplay binary 0 1: Show YALMIP display; otherwise 0.

HBL.delta vector/float 0.02 The discrete range of the outlier tolerance, i.e.,
δHUB , for cross-validation, e.g., [0.02:0.002:0.03]. If
a scalar is given, then use it directly without tun-
ing.

HBL.numFold integer 5 The number of folds for cross-validation tuning of
δHUB . This number must be divisible by the num-
ber of training samples.

HBL.fixCV binary 1 1: Fix the random seed for partitioning data in
cross-validation; otherwise 0.

HBL.fixSeed integer 88 Random seed number for cross-validation partition-
ing.

Tips

• It is recommended that HBL.programType be set to ’indivi’, as the solution of an overall model
usually requires long compute times and may cause MATLAB to hang. Naturally, the resultant
optimal β̂ will also differ between the two approaches. Note that using the average error across
dependent variables for evaluation of the algorithm may be unfair, since each dependent variable
has been treated separately. A reasonable substitute could be to use the min/max error for each
dependent variable as a performance indicator instead.

• Cross-validation for δHUB is not implemented if HBL.delta is a scalar. As δHUB functions as a
threshold to distinguish between inliers and outliers, its tuning is recommended.

• It is highly recommended to use ’yalmip’ as the language, ’fmincon’ as the solver, and ’indivi’ as
the type of programming.

• It is highly recommended to enable parallel computing mode, as it can markedly enhance computa-
tional efficiency, particularly when the auto-tuning feature for hyperparameters is engaged.

• In the event that a program is interrupted while CVX is midway through solving, input the following
codes into the MATLAB command window to shut down the CVX process. This will prevent future
errors in calling/selecting the CVX solver, e.g., “The global CVX solver selection cannot be changed
while a model is being constructed.”

CHAPTER 4. MODEL FITTING AND TESTING 48

% When having this error: "The global CVX solver selection cannot be changed while

a model is being constructed," input the following codes into the command

window.

>> cvx_begin;

>> cvx_end;

Examples

>> model = daline.fit(data, 'method.name', 'LS_HBLE');

>> model = daline.fit(data, 'method.name', 'LS_HBLE', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'HBL.language', 'yalmip', 'HBL.solver', 'fmincon',
'HBL.delta', 0.01);

>> opt = daline.setopt('method.name', 'LS_HBLE', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'HBL.parallel', 0, 'HBL.language', 'yalmip', 'HBL.
solver', 'fmincon');

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_HBLE(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'HBL.language', 'yalmip', 'HBL.solver', 'fmincon');

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'HBL.language', 'yalmip', 'HBL.solver', 'fmincon');

>> model = func_algorithm_LS_HBLE(data, opt);

More About

The least squares problem with the Huber loss function can be converted to the equivalent quadratic
convex problem

minimize
β,ε,w

∑Ns

i=1

∑Ny

j=1
(
1

2
ε2ij + δHUBwij)

subject to − ε−w ⪯ Y −Xβ ⪯ ε+w

0 ⪯ ε ⪯ δHUB1

w ⪰ 0

where ε, w, and 1 are Ns-by-Ny matrices. This problem can be solved as a normal optimization problem
using either the CVX or the YALMIP toolboxes in MATLAB. In the case where HBL.programType is set

CHAPTER 4. MODEL FITTING AND TESTING 49

to ’indivi’, one column of Y , instead of the entire matrix, is used in the above optimization formulation.
Accordingly, the summation over j is taken out. The problem is solved Ny times, once for each dependent

variable in Y , and the resulting β̂ from each solution are concatenated column-wise.

References

Yitong Liu, Zhengshuo Li, and Yu Zhou. “Data-Driven-Aided Linear Three-Phase Power Flow Model for
Distribution Power Systems”. In: IEEE Transactions on Power Systems (2021)

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004

4.2.8 Least Squares with Huber Weighting Function (LS_HBW)

Additional inputs

Table 4.8: Table of parameters specific to least squares with Huber weighting function.

Parameter Format Default Description

HBW.parallel binary 1 1: Use parallel computation; otherwise 0.

HBW.TuningConst vector/float [1:0.1:1.4] The discrete range of kHUB for cross-validation,
e.g., [1:0.1:1.4]. If a scalar is given, then use it
directly without tuning.

HBW.PCA binary 1 1: Conduct PCA on the predictor matrix; other-
wise 0.

HBW.numComponentRatio float 70 Used in PCA without cross-validation. Unit: %,
i.e., the proportion of the number of principal com-
ponents w.r.t. the number of predictors.

HBW.numFold integer 10 The number of folds for cross-validation tuning of
kHUB , the Huber tuning constant. This number
must be divisible by the number of training sam-
ples.

HBW.fixCV binary 1 1: Fix the random seed for partitioning data in
cross-validation; otherwise 0.

HBW.fixSeed integer 88 Random seed number for cross-validation partition-
ing.

Tips

• Cross-validation for the Huber tuning constant kHUB is not implemented if HBW.TuningConst is a
scalar. Smaller values of kHUB defend against outliers better, but are less efficient when errors are
normally distributed. Thus, tuning kHUB is recommended. However, should a scalar argument be
preferred, it can be set to a suggested value of 1.345, which gives 95% efficiency when errors are
normal while still offering robustness against outliers.

• Applying PCA on the predictor matrix for dimensionality reduction can help to address data

CHAPTER 4. MODEL FITTING AND TESTING 50

collinearity and noise. However, its use does not guarantee improvement in predictor accuracy.
In addition, for valid results, the predictor data must be normalized.

Examples

>> model = daline.fit(data, 'method.name', 'LS_HBW');

>> model = daline.fit(data, 'method.name', 'LS_HBW', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'HBW.TuningConst', [0.8:0.1:1.5], 'HBW.PCA', 0);

>> opt = daline.setopt('method.name', 'LS_HBW', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'HBW.TuningConst', [0.8:0.1:1.5], 'HBW.PCA', 0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_HBW(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'HBW.TuningConst', [0.8:0.1:1.5], 'HBW.PCA', 0);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'HBW.TuningConst', [0.8:0.1:1.5], 'HBW.PCA', 0);

>> model = func_algorithm_LS_HBW(data, opt);

More About

The least squares problem with the Huber loss function is equivalent to a robust regression problem that
uses a Huber weight function:

β̂
(t)

= argmin
β

(Y −Xβ)⊤W (t−1)
HUB(Y −Xβ)

It has the explicit solution

β̂
(t)

= (X⊤W
(t−1)
HUBX)−1X⊤W

(t−1)
HUBY

where W
(t−1)
HUB = diag{w(t−1)} is the current weight matrix, and

w(t−1) =


1, |ẽ(t−1)| < kHUB

kHUB

|ẽ(t−1)|
, |ẽ(t−1)| ≥ kHUB

(4.3)

Here, kHUB is the Huber tuning constant, and ẽ(t−1) = ε(t−1)

σ̂
√
1−h

where ε(t−1) = Y −Xβ̂(t−1)
is the matrix

of residuals from the previous iteration, σ̂ is a robust measure of spread given by σ̂ = MAR/0.6745,
where MAR refers to the mean absolute residual, and h is the vector comprising the diagonals of the hat

matrix H =X
(
X⊤X

)−1
X⊤; i.e., the leverage values from a least squares fit.

CHAPTER 4. MODEL FITTING AND TESTING 51

4.2.9 Generalized Least Squares (LS_GEN)

Additional inputs

Table 4.9: Table of parameters specific to generalized least squares.

Parameter Format Default Description

LSG.parallel binary 1 1: Use parallel computation; otherwise 0.

LSG.InnovMdl character ’AR’ Model for the residuals’ covariance, Ω. Options in-
clude ’AR’, ’CLM’, ’HC0’; see www.mathworks.com/
help/econ/fgls.html for all options and more de-
tails.

Tips

• The primary application of this method arises when regression residuals are heteroscedastic and/or
autocorrelated. If Ω̂ = I, β̂ is returned as the ordinary least squares estimate.

• The true covariance matrix Ω of ε is typically unknown in real-world applications and challenging
to estimate. Currently, arbitrary models for computing Ω in this method are not enabled; choose
from one of the models provided in www.mathworks.com/help/econ/fgls.html.

• Using this method requires installation of the MATLAB Econometrics toolbox as the function calls
on the toolbox’s fgls script.

• In DPFL contexts, fgls often runs into errors in computing the inverse of the variable R, corre-
sponding to the upper-triangular matrix R mentioned below. To address this problem, the code of
fgls.m can be modified as follows:

% change these lines in fgls.m

[Q,R] = qr(X,0);

coeff = R\(Q'*y);

% to the following:

[Q,R] = qr(X,0);

if det(R) == 0

coeff = pinv(R)*(Q'*y);
else

coeff = R\(Q'*y);
end

Examples

>> model = daline.fit(data, 'method.name', 'LS_GEN');

www.mathworks.com/help/econ/fgls.html
www.mathworks.com/help/econ/fgls.html
www.mathworks.com/help/econ/fgls.html

CHAPTER 4. MODEL FITTING AND TESTING 52

>> model = daline.fit(data, 'method.name', 'LS_GEN', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSG.InnovMdl', 'AR');

>> opt = daline.setopt('method.name', 'LS_GEN', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSG.InnovMdl', 'AR');

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_GEN(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'LSG.InnovMdl', 'AR');

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'LSG.InnovMdl', 'AR');

>> model = func_algorithm_LS_GEN(data, opt);

More About

In this method, the covariance matrix of the residuals is defined as

Var(ε|X) = σ2εΩ

where σ2ε is a constant and Ω ∈ RNs×Ns is a positive definite symmetric matrix. This is in contrast to
the usual ordinary least squares assumption that Var(ε|X) = σ2εI.

The value of Ω is estimated based on a pre-specified model for the covariance of the residuals specified
by LSG.InnovMdl. Since Ω is a function not only of the training data set, but also the model residuals
ε, an initial β̂ to calculate ε must be computed. This is done by performing ordinary least squares via
the QR decomposition, as done in Section 4.9.1:

β̂ = R−1Q⊤Y

If R is singular, as is commonly the case in power system applications, then the generalized inverse of R
is taken above instead.

In the first full iteration of the algorithm, the solution of the generalized least squares method is
found as

β̂ =
(
X⊤Ω−1X

)−1
X⊤Ω−1Y

to give a new estimate of ε and thus also Ω. This process continues iteratively until β̂ converges.

References

The MathWorks Inc. Feasible generalized least squares. 2023. url: https://mathworks.com/help/

econ/fgls.html#buicqm5-17

Carl Mugnier et al. “Model-less/measurement-based computation of voltage sensitivities in unbalanced
electrical distribution networks”. In: 2016 Power Systems Computation Conference (PSCC). IEEE. 2016,
pp. 1–7

https://mathworks.com/help/econ/fgls.html#buicqm5-17
https://mathworks.com/help/econ/fgls.html#buicqm5-17

CHAPTER 4. MODEL FITTING AND TESTING 53

4.2.10 Total Least Squares (LS_TOL)

Tips

• The primary application of this method arises when not only the dependent variables, but also the
independent variables in the data have noise; i.e., total least squares can be robust to noise in both
Y and X.

• This method assumes that the standard deviations of measurement noise are equals, which may
not be true. To address this, a modification of the method, weighted total least squares, can be
implemented instead. However, it involves an NP-hard problem that cannot be solved in polynomial
time unless P = NP, and is thus only computationally feasible in small power systems.

• Technically, an exact solution is only possible when the submatrix V yy is non-singular and can be
inverted. Given this, in func_algorithm_LS_TOL, the pseudoinverse of V yy is taken when V yy is
not invertible.

Examples

>> model = daline.fit(data, 'method.name', 'LS_TOL');

>> model = daline.fit(data, 'method.name', 'LS_TOL', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'LS_TOL', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_TOL(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LS_TOL(data, opt);

More About

This method treats both X and Y as having noise. Given X0 ∈ RNs×Nx and Y 0 ∈ RNs×Ny , which
denote the ground truth realizations of x and y, we can thus express X =X0 + εx and Y = Y 0 + εy.

Consequently, the problem

min
β

∥ [∆X ∆Y] ∥22

s.t. Y +∆Y = (X +∆X)β
(4.4)

is solved to minimize the orthogonal distance between the data point in [X Y] and the fitting hyperplane.

CHAPTER 4. MODEL FITTING AND TESTING 54

Using singular value decomposition where [X Y] = UΣV ⊤, V ∈ R(Nx+Ny)×(Nx+Ny) is partitioned
as

V =


V xx V xy

V yx V yy


with V xy ∈ RNx×Ny . The solution is then given by

β̂ = −V xyV
−1
yy

References

Yuxiao Liu et al. “A data-driven approach to linearize power flow equations considering measurement
noise”. In: IEEE Transactions on Smart Grid 11.3 (2019), pp. 2576–2587

4.2.11 Least Squares with Clustering (LS_CLS)

Additional inputs

Table 4.10: Table of parameters specific to least squares with clustering.

Parameter Format Default Description

LSC.parallel binary 1 1: Use parallel computation; otherwise 0.

LSC.clusNumInterval vector/integer [2:1:10] The discrete range of the number of clusters to be
tuned in cross-validation. If a scalar integer is given,
then use it directly without tuning.

LSC.cvNumFold integer 10 The number of folds for cross-validation tuning of
the number of clusters to be used in K-means. This
number must be divisible by the number of training
samples.

LSC.fixKmeans binary 1 1: Fix the random seed for K-means in LS_CLS for
consistency in clustering; otherwise 0.

LSC.fixCV binary 1 1: Fix the random seed for partitioning data in
cross-validation; otherwise 0.

LSC.fixSeed integer 88 Random seed number for K-means and cross-
validation partitioning.

Tips

• The primary application of this method arises when separate linear power flow models can be fit
from different power system operating modes. Due to frequent ambiguity in the cross-validation-
determined optimal number of clusters to use in regression, this method works best when the number

CHAPTER 4. MODEL FITTING AND TESTING 55

of operating modes, and thus the number of clusters to be used, is already known.

• In large power systems with many independent variables, using a large number of clusters can easily
lead to underdetermined linear systems; i.e., there may be fewer than Ny observations belonging
to a cluster. This leads to invalid results from LS CLS, or in a more general sense, from all DPFL
methods that integrate clustering.

• For this method to work, the predictor variables must all be linearly independent; i.e., the predictor
matrix must have full column rank. Otherwise, this method cannot generate the desired linear
power flow model owing to the data multicollinearity issue [2, 3].

Examples

>> model = daline.fit(data, 'method.name', 'LS_CLS');

>> model = daline.fit(data, 'method.name', 'LS_CLS', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSC.fixKmeans', 0, 'LSC.clusNumInterval',
[6:2:12], 'LSC.cvNumFold', 5);

>> opt = daline.setopt('method.name', 'LS_CLS', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSC.fixKmeans', 0, 'LSC.clusNumInterval',
[6:2:12], 'LSC.cvNumFold', 5);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_CLS(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'LSC.fixKmeans', 0, 'LSC.clusNumInterval', [6:2:12], 'LSC.
cvNumFold', 5);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'LSC.fixKmeans', 0, 'LSC.clusNumInterval', [6:2:12], 'LSC.cvNumFold', 5);

>> model = func_algorithm_LS_CLS(data, opt);

More About

X is first divided into K clusters using K-means clustering. Ordinary least squares is subsequently
implemented on the partitioned data from each of the K clusters, such that the regression coefficients of
the k-th segment are found as

β̂(k) =
[
X(k)⊤X(k)

]−1
X(k)⊤Y (k), ∀k

To apply the resulting piecewise model, identify the cluster that a given input x belongs to via

k = argmin
j

∥x− µ(j)∥22

CHAPTER 4. MODEL FITTING AND TESTING 56

where µ(j) is the centroid of cluster j. Then, use the corresponding β̂ to generate the prediction of y as
ŷ = β̂(k)⊤x.

4.2.12 Least Squares with Lifting Dimension: Lifting the Whole x Jointly

(LS_LIFX)

Additional inputs

Table 4.11: Table of parameters specific to least squares with lifting dimension: lifting the whole x jointly.

Parameter Format Default Description

variable.lift binary 1 It must be 1, i.e., the dimension lifting mode must
be turned on.

variable.liftX binary 1 It must be 1, i.e., it must perform the lifting defined
in Korda and Mezić [17].

variable.liftFixC binary 1 1: Fix the randomness of dimension lifting, i.e., the
value of c as users will see below; otherwise 0.

variable.liftNumDim vector/integer [] The number of lifted dimensions, Nd. The default
input of [] equates this number to the dimension
of the predictor matrix X.

variable.liftEps float 1 Hyperparameter ε in the ’gauss’ and ’invquad’ lift-
ing functions.

variable.liftK float 1 Hyperparameter K in the ’polyharmonic’ lifting
function.

variable.liftType character ’gauss’ Lifting function used. Choose amongst ’gauss’,
’invquad’, ’invquad ref’, ’invmultquad’, ’inv-
multquad ref’, ’polyharmonic’, ’polyharmonic ref’,
’thinplate’.

Tips

• variable.liftNumDim must take an integer scalar value from 0 to Nx.

– A value of 0 means that none of the variables in X are lifted, such that the returned results are
identical to those from LS_PIN.

– A value n between 0 to Nx will lift the first n variables in X.

– Argument values larger than Nx will automatically be reverted to take the value of Nx.

• The elementary function fb is computed according to line 24 in the open-source code file “ref.m”
from Korda and Mezić [17], i.e., lifting the whole x simultaneously.

• Considering that increasing the lifting dimensions substantially enlarges the training dataset size,
for exceptionally large systems (e.g., over 1000 buses), this expansion could cause the dataset to
surpass MATLAB’s memory capacity.

Examples

CHAPTER 4. MODEL FITTING AND TESTING 57

>> model = daline.fit(data, 'method.name', 'LS_LIFX');

>> model = daline.fit(data, 'method.name', 'LS_LIFX', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.
liftK', 2);

>> opt = daline.setopt('method.name', 'LS_LIFX', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.
liftK', 2);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_LIFX(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.liftK', 2);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'variable.liftType', 'polyharmonic', 'variable.liftK', 2);

>> model = func_algorithm_LS_LIFX(data, opt);

More About

This method finds the coefficient matrix βlift by performing dimension lifting and minimizing the sum of
squared residuals

min
βlift

∥Y −Xliftβlift∥22

which has the explicit solution

ˆβlift =
(
Xlift

⊤Xlift

)−1
Xlift

⊤Y

Here, the generalized inverse (a.k.a. the Moore-Penrose pseudoinverse) is used to find
(
Xlift

⊤Xlift

)−1
.

Each row of Xlift ∈ RNs×(Nx+Nd) is of the form

xlift =


x

ψ(x)


⊤

CHAPTER 4. MODEL FITTING AND TESTING 58

and comprises original observation x and ND lift dimension functions ψ(x) defined as

ψ(x) =



ψ1(x)

...

ψD(x)


where ψi(x) = flift(x − ci). ci is a RNx×1 base vector for the ith lifted dimension, and takes a random
value from the range of each independent variable in X. Lift dimension functions which are currently
supported in Daline are listed in Table 4.12. Note that the elementary function fb in Table 4.12 is given
by fb(x− ci) =

∑Nx
j=1(x− cij)

2 in the method LS_LIFX when variable.liftX = 1

Table 4.12: Table of lifting functions usable as arguments to variable.liftType in
func_algorithm_LS_LIF. Functions with names with a ’-ref’ suffix refer to those taken from Guo et
al. [39].

Function Description

’gauss’ flift(x− ci) = e−ε2·fb(x−ci)

’invquad’ flift(x− ci) = 1/(1 + ε2 · fb(x− ci))

’invquad_ref’ flift(x− ci) = 1/(1 + efb(x−ci))

’invmultquad’ flift(x− ci) = 1/
√

1 + ε2 · fb(x− ci)

’invmultquad_ref’ flift(x− ci) = 1/
√
1 + efb(x−ci)

’polyharmonic’ flift(x− ci) = (fb(x− ci))
K/2 log

√
fb(x− ci)

’polyharmonic_ref’ flift(x− ci) =
√

fb(x− ci) log
√

fb(x− ci)

’thinplate’ flift(x− ci) = fb(x− ci) log
√

fb(x− ci)

References

Li Guo et al. “Data-driven Power Flow Calculation Method: A Lifting Dimension Linear Regression
Approach”. In: IEEE Transactions on Power Systems (2021)

Milan Korda and Igor Mezić. “Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control”. In: Automatica 93 (2018), pp. 149–160

CHAPTER 4. MODEL FITTING AND TESTING 59

4.2.13 Least Squares with Lifting Dimension: Lifting the Elements of x Indi-

vidually (LS_LIFXi)

Additional inputs

Table 4.13: Table of parameters specific to least squares with lifting dimension: lifting the elements of x
individually.

Parameter Format Default Description

variable.lift binary 1 It must be 1, i.e., the dimension lifting mode must
be turned on.

variable.liftX binary 0 It must be 0, i.e., it must perform the lifting defined
in Guo et al. [16].

variable.liftFixC binary 1 1: Fix the randomness of dimension lifting, i.e., the
value of c as users will see below; otherwise 0.

variable.liftNumDim vector/integer [] The number of lifted dimensions, Nd. The default
input of [] equates this number to the dimension
of the predictor matrix X.

variable.liftEps float 1 Hyperparameter ε in the ’gauss’ and ’invquad’ lift-
ing functions.

variable.liftK float 1 Hyperparameter K in the ’polyharmonic’ lifting
function.

variable.liftType character ’gauss’ Lifting function used. Choose amongst ’gauss’,
’invquad’, ’invquad ref’, ’invmultquad’, ’inv-
multquad ref’, ’polyharmonic’, ’polyharmonic ref’,
’thinplate’.

Tips

• See the general tips described in Section 4.2.12.

• The elementary function fb is computed as given by Equation (12) in Guo et al. [16], i.e., lifting the
elements of x individually.

Examples

>> model = daline.fit(data, 'method.name', 'LS_LIFXi');

>> model = daline.fit(data, 'method.name', 'LS_LIFXi', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.
liftK', 2);

CHAPTER 4. MODEL FITTING AND TESTING 60

>> opt = daline.setopt('method.name', 'LS_LIFXi', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.
liftK', 2);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_LIFXi(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'variable.liftType', 'polyharmonic', 'variable.liftK', 2);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'variable.liftType', 'polyharmonic', 'variable.liftK', 2);

>> model = func_algorithm_LS_LIFXi(data, opt);

More About

The content here is mostly the same as the “More About” in Section 4.2.12. The only difference is that,
in the method LS_LIFXi when variable.liftX = 0, the elementary function fb mentioned in Table 4.12
is given by fb(x− ci) =

∑Nx
j=1(xi − cij)

2, where xi is the ith element in x.

References

Li Guo et al. “Data-driven Power Flow Calculation Method: A Lifting Dimension Linear Regression
Approach”. In: IEEE Transactions on Power Systems (2021)

Milan Korda and Igor Mezić. “Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control”. In: Automatica 93 (2018), pp. 149–160

CHAPTER 4. MODEL FITTING AND TESTING 61

4.2.14 Weighed Least Squares (LS_WEI)

Additional inputs

Table 4.14: Table of parameters specific to the weighted least squares method.

Parameter Format Default Description

LSW.omega float 0.6 Weight value ω with a valid range from 0 to 1. The
default value of 0.6 is from [9].

LSW.programType character ’whole’ ’whole’ puts all responses (i.e., the number of
columns in Y) into one optimization program to
solve for all β̂ at once; ’indivi’ solves for β̂ individu-
ally by building one optimization program for each
response.

LSW.language character ’cvx’ Optimization toolbox to formulate the program-
ming problem. Choose between ’cvx’ or ’yalmip’.

LSW.solver character ’SeDuMi’ Solver options, e.g., ’quadprog’, ’Gurobi’, ’SDPT3’,
’SeDuMi’ (’SDPT3’ and ’SeDuMi’ are included in
Daline via CVX; ’quadprog’ and ’fmincon’ are
built in the MATLAB Optimization Toolbox; for
’Gurobi’, you need to install it manually.).

LSW.parallel binary 1 1: Use parallel computation; otherwise 0.
Only valid when LSW.language = ’yalmip’ and
LSW.programType = ’indivi’, because to the best
of the authors’ knowledge, cvx does not support
parallel computing.

LSW.cvxQuiet binary 1 1: Suppress CVX output in the command window;
otherwise 0.

LSW.yalDisplay binary 0 1: Show YALMIP display; otherwise 0.

Tips

• The primary application of this method arises when data is collected sequentially in time, at regular
intervals. The inputs X and Y given to this method must be ordered such that their first row
comprises the oldest observation, and their last row the newest observation.

• If LSW.omega is set to a value less than 1, the weights of earlier measurements decrease exponentially
with the number of updates. Although this helps in situations where the system operating point is
changing, over time, it also causes earlier observations to take on practically insignificant weights.
Thus, to optimize prediction accuracy, the use of cross-validation for the forgetting factor LSW.omega
is recommended.

• It is recommended to use ’cvx’ as the language, ’SeDuMi’ as the solver, and ’whole’ as the type of
programming.

• In the event that a program is interrupted while CVX is midway through solving, input the following
codes into the MATLAB command window to shut down the CVX process. This will prevent future
errors in calling/selecting the CVX solver, e.g., “The global CVX solver selection cannot be changed
while a model is being constructed.”

CHAPTER 4. MODEL FITTING AND TESTING 62

% When having this error: "The global CVX solver selection cannot be changed while

a model is being constructed," input the following codes into the command

window.

>> cvx_begin;

>> cvx_end;

Examples

>> model = daline.fit(data, 'method.name', 'LS_WEI');

>> model = daline.fit(data, 'method.name', 'LS_WEI', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSW.omega', 0.95, 'LSW.programType', 'whole', 'LSW
.solver', 'SeDuMi', 'LSW.language', 'cvx', 'LSW.programType', 'whole');

>> opt = daline.setopt('method.name', 'LS_WEI', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSW.omega', 0.95, 'LSW.programType', 'whole', 'LSW
.solver', 'SeDuMi');

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_WEI(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'LSW.omega', 0.95, 'LSW.programType', 'whole', 'LSW.solver',
'SeDuMi');

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'LSW.omega', 0.95, 'LSW.programType', 'whole', 'LSW.solver', 'SeDuMi');

>> model = func_algorithm_LS_WEI(data, opt);

More About

This method employs a forgetting mechanism that uses the forgetting factor ω to weight data points
that are farther away in time from the target operating point less heavily. Consequently, the objective
function becomes

min
β

∥Ω(Y −Xβ)∥22

where Ω is a Ns-by-Ny weight matrix, with each element in its ith row taking the value ωNs−i. This
implies that only the most recent observation xNs in the predictor matrix X is fully weighted. Note that
the minimization problem does not have a solution that can be computed analytically as Ω is singular
and cannot be inverted.

In the case where LSW.programType is set to ’indivi’, one column of Y , instead of the entire matrix,
is used in the above optimization formulation. The problem is solved Ny times, once for each dependent

variable in Y , and the resulting β̂ from each solution are concatenated column-wise.

CHAPTER 4. MODEL FITTING AND TESTING 63

References

Hanchen Xu et al. “Data-driven voltage regulation in radial power distribution systems”. In: IEEE
Transactions on Power Systems 35.3 (2019), pp. 2133–2143

4.2.15 Recursive Least Squares (LS_REC)

Additional inputs

Table 4.15: Table of parameters specific to recursive least squares.

Parameter Format Default Description

LSR.recursivePercentage float 40 Percentage of the training data set that comprises
new data. Each new observation will be learnt re-
cursively.

LSR.initializeP binary 1 1: Initialize P with a large value; otherwise 0.

LSR.largeValueP float 1e6 Large value for initializing P .

LSR.forgetFactor float 0.99 Forgetting factor λ; generally takes values between
0.95 and 0.99.

Tips

• The primary application of this method arises in non-stationary environments where the underlying
data-generating process may change over time. Smaller values of λ lend more weight to recent
observations, increasing the tracking ability of the algorithm for new data. However, this may also
increase sensitivity to noise. Conversely, λ closer to 1 allows for faster convergence.

• When λ = 1, this method is equivalent to applying ordinary least squares repeatedly to integrate
new observations.

• For this method to work, especially when λ = 1, the predictor variables must all be linearly in-
dependent; i.e., the predictor matrix must have full column rank. Otherwise, this method cannot
generate the desired linear power flow model owing to the data multicollinearity issue [2, 3].

Examples

>> model = daline.fit(data, 'method.name', 'LS_REC');

>> model = daline.fit(data, 'method.name', 'LS_REC', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30, 'LSR.initializeP',
0);

>> opt = daline.setopt('method.name', 'LS_REC', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30, 'LSR.initializeP',

CHAPTER 4. MODEL FITTING AND TESTING 64

0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_REC(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30, 'LSR.initializeP', 0);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'LSR.recursivePercentage', 30, 'LSR.initializeP', 0);

>> model = func_algorithm_LS_REC(data, opt);

More About

This method is an adaptive algorithm that updates regression coefficients as new data becomes available.
The old measurements of x and y from time step 1 to t are denoted by X[t] ∈ Rt×Nx and Y [t] ∈ Rt×Ny

respectively. Furthermore, β[t] refers to the coefficients derived from them using ordinary least squares
at time step t.

At time step t+1, the recursive least squares algorithm updates the coefficient vector β with the new
measurements xt+1 and yt+1 via

β[t+ 1] = β[t] +K[t+ 1](yt+1 − β[t]⊤xt+1)

where K[t+ 1] ∈ RNx×1 is the gain vector, computed as

K[t+ 1] =
P [t]xt+1

λ+ x⊤
t+1P [t]xt+1

Here, P [t] ∈ RNx×Nx is the inverse of the covariance matrix of X[t] if LSR.initializeP is set to 0.
Otherwise, it is a diagonal matrix taking the value of LSR.largeValueP along its diagonal. P [t] can be
updated by

P [t+ 1] =
1

λ

(
P [t]−K[t+ 1]x⊤

t+1P [t]
)

Parameter λ ∈ R is a forgetting factor between 0 and 1.

References

Yitong Liu, Zhengshuo Li, and Shumin Sun. “A Data-Driven Method for Online Constructing Linear
Power Flow Model”. In: IEEE Transactions on Industry Applications (2023)

Manoj Badoni, Alka Singh, and Bhim Singh. “Variable Forgetting Factor Recursive Least Square Control
Algorithm for DSTATCOM”. in: IEEE Transactions on Power Delivery 30.5 (2015), pp. 2353–2361. doi:
10.1109/TPWRD.2015.2422139

https://doi.org/10.1109/TPWRD.2015.2422139

CHAPTER 4. MODEL FITTING AND TESTING 65

4.2.16 Repeated Least Squares (LS_REP)

Additional inputs

Table 4.16: Table of parameters specific to repeated least squares.

Parameter Format Default Description

LSR.recursivePercentage float 40 Percentage of the training data set that comprises
new data. Each new observation will be learnt re-
cursively.

Tips

• This function is intended as a baseline for comparison with LS_REC in terms of accuracy and com-
putational efficiency.

• For this method to work, the predictor variables must all be linearly independent; i.e., the predictor
matrix must have full column rank. Otherwise, this method cannot generate the desired linear
power flow model owing to the data multicollinearity issue [2, 3].

Examples

>> model = daline.fit(data, 'method.name', 'LS_REP');

>> model = daline.fit(data, 'method.name', 'LS_REP', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30);

>> opt = daline.setopt('method.name', 'LS_REP', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LS_REP(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'LSR.recursivePercentage', 30);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'LSR.recursivePercentage', 30);

>> model = func_algorithm_LS_REP(data, opt);

More About

This method is essentially recursive least squares, but with the forgetting factor λ fixed to have the value
of 1. This amounts to repeatedly applying ordinary least squares with each new observation collected to
update the regression model.

See also the information in Section 4.2.15.

CHAPTER 4. MODEL FITTING AND TESTING 66

References

Yitong Liu, Zhengshuo Li, and Shumin Sun. “A Data-Driven Method for Online Constructing Linear
Power Flow Model”. In: IEEE Transactions on Industry Applications (2023)

Manoj Badoni, Alka Singh, and Bhim Singh. “Variable Forgetting Factor Recursive Least Square Control
Algorithm for DSTATCOM”. in: IEEE Transactions on Power Delivery 30.5 (2015), pp. 2353–2361. doi:
10.1109/TPWRD.2015.2422139

https://doi.org/10.1109/TPWRD.2015.2422139

CHAPTER 4. MODEL FITTING AND TESTING 67

4.3 Partial Least Squares Regression Family

This class of functions covers the following algorithms:

• Ordinary partial least squares with SIMPLS (PLS_SIM)

• Ordinary partial least squares with SIMPLS using rank of X (PLS_SIMRX)

• Ordinary partial least squares with NIPALS (PLS_NIP)

• Partial least squares bundling known/unknown variables and replacing slack bus’s power injection
(PLS_BDL)

• Partial least squares bundling known/unknown variables (PLS_BDLY2)

• Partial least squares bundling known and unknown variables, based on the open-source code of [20]
(PLS_BDLopen)

• Recursive partial least squares with NIPALS (PLS_REC)

• Recursive partial least squares with NIPALS, using forgetting factors for observations (PLS_RECW)

• Repeated partial least squares with NIPALS (PLS_REP)

• Partial least squares with clustering (PLS_CLS)

More About

The ordinary partial least squares approach projects X and Y onto lower-dimensional spaces defined by
their orthogonal score vectors, thereby removing the correlated components within the original datasets.
The projection amounts to decomposing X and Y into

X = TC⊤ +E

Y = UR⊤ + F

where T ∈ RNs×Np and U ∈ RNs×Np consist of Np score components extracted from X and Y , C ∈
RNx×Np and R ∈ RNy×Np denote the loading matrices of X and Y . E ∈ RNs×Nx and F ∈ RNs×Ny are
the residuals for X and Y .

The solution of the ordinary partial least squares regression is explicitly given by

β̂ =X⊤U
(
T⊤XX⊤U

)−1
T⊤Y

Notes that when Np = Nx, i.e., the number of score components equals the number of variables in
X, the ordinary partial least squares regression degrades to ordinary least squares regression Qin [47].

4.3.1 Ordinary Partial Least Squares with SIMPLS (PLS_SIM)

Tips

• Unless Ny = 1, SIMPLS and NIPALS generate very slight differences in β. Results from Alin [48]
show that of the two, SIMPLS enjoys higher computational efficiency.

Examples

CHAPTER 4. MODEL FITTING AND TESTING 68

>> model = daline.fit(data, 'method.name', 'PLS_SIM');

>> model = daline.fit(data, 'method.name', 'PLS_SIM', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'PLS_SIM', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_SIM(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_PLS_SIM(data, opt);

More About

The SIMPLS algorithm, so named because it is a “straightforward implementation of a statistically
inspired modification of the PLS method,” is one approach to performing the PLS decompositions. It
does so by calculating the score components T and U directly as linear combinations of the original
variables in X and Y .

Note that PLS_SIM centers X first before taking its rank as the number of score components, instead
of directly taking the rank of X.

References

Yi Tan et al. “Linearizing power flow model: A hybrid physical model-driven and data-driven approach”.
In: IEEE Transactions on Power Systems 35.3 (2020), pp. 2475–2478

Aylin Alin. “Comparison of PLS algorithms when number of objects is much larger than number of
variables”. In: Statistical papers 50.4 (2009), pp. 711–720

Sijmen De Jong. “SIMPLS: an alternative approach to partial least squares regression”. In: Chemometrics
and intelligent laboratory systems 18.3 (1993), pp. 251–263

4.3.2 Ordinary Partial Least Squares with SIMPLS Using Rank ofX (PLS_SIMRX)

Tips

• This function should be used for comparison with PLS_SIM in terms of accuracy. Preliminary
empirical testing suggests that PLS_SIM generally outperforms PLS_SIMRX significantly. One major
reason is that PLS_SIM centers X first before taking its rank as the number of score components,
while PLS_SIMRX directly takes the rank of X as the number of score components.

CHAPTER 4. MODEL FITTING AND TESTING 69

Examples

>> model = daline.fit(data, 'method.name', 'PLS_SIMRX');

>> model = daline.fit(data, 'method.name', 'PLS_SIMRX', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'PLS_SIMRX', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_SIMRX(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_PLS_SIMRX(data, opt);

More About

This method sets the number of score components equal to the rank of X, which is typical for generic ap-
plications of PLS. In contrast, PLS_SIM uses the rank of the centered X instead. See also the information
in Section 4.3.1.

4.3.3 Ordinary Partial Least Squares with NIPALS (PLS_NIP)

Additional inputs

Table 4.17: Table of parameters specific to ordinary partial least squares with NIPALS.

Parameter Format Default Description

PLS.outerTol float 1e-12 The tolerance for stopping the outer iteration loop
of NIPALS; this value should be very small.

PLS.innerTol float 1e-12 The tolerance for stopping the inner iteration loop
of NIPALS; this value should be very small.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_NIP');

CHAPTER 4. MODEL FITTING AND TESTING 70

>> model = daline.fit(data, 'method.name', 'PLS_NIP', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'}, 'PLS.innerTol', 1e-10);

>> opt = daline.setopt('method.name', 'PLS_NIP', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'}, 'PLS.innerTol', 1e-10);

>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_NIP(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'}, 'PLS.innerTol', 1e-10);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'}, '
PLS.innerTol', 1e-10);

>> model = func_algorithm_PLS_NIP(data, opt);

More About

The nonlinear iterative partial least squares (NIPALS) algorithm is the classical method used in PLS,
and works by constructing deflated data matrices of X and Y ; i.e., each iteration of NIPALS yields new
data sets Xt and Y t representing matrices of residuals after regressing all variables on the current set of
score components T .

In the outer iteration loop of NIPALS, T and U are updated until T converges within the tolerance
given by PLS.outerTol. β̂ is computed in the inner iteration loop, which is exited from when the deflated
X (i.e., the residuals) is smaller than the specified PLS.innerTol.

References

S Joe Qin. “Partial least squares regression for recursive system identification”. In: Proceedings of 32nd
IEEE Conference on Decision and Control. IEEE. 1993, pp. 2617–2622

Herman Wold. “Path models with latent variables: The NIPALS approach”. In: Quantitative sociology.
Elsevier, 1975, pp. 307–357

4.3.4 Partial Least Squares Bundling Known/Unknown Variables and Replacing

Slack Bus’s Power Injection (PLS_BDL)

Tips

• This method fixes the predictors as Vm, P, Q and the responses as Vm, Va, P, Q PF, PT, QF, QT

in opt.variable.predictor and opt.variable.response respectively. Changing the inputs to
these function arguments will have no effect on the final output of PLS_BDL.

• The idea behind “bundling” is to group known (i.e., independent) and unknown (i.e., dependent)
variables in a way that makes DPFL models resilient to bus-type variations. For example, this occurs
when a PQ bus changes to a PV bus, such that its reactive power injections become unknown but
its voltages become known. With bundling, the β learned under previous bus-type paradigms is
still valid.

CHAPTER 4. MODEL FITTING AND TESTING 71

• Large linearization errors or even failures may occur if the β̂22 described below is nearly singular.
This may arise in scenarios where, for instance, the voltages at certain PV buses are fixed in the
training dataset.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_BDL');

>> opt = daline.setopt('method.name', 'PLS_BDL');
>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_BDL(data);

More About

In this approach, X is separated into X1 ∈ RNs×Nx1 and X2 ∈ RNs×Nx2 , where Nx = Nx1 + Nx2 .
X1 collects the measurements of the active/reactive power injections at PQ buses and the active power
injections at PV buses, while X2 collects the observations of the voltages of the slack and PV buses.

Similarly, Y splits into Y 1 ∈ RNs×Ny1 and Y 2 ∈ RNs×Ny2 , where Ny = Ny1 +Ny2 . Y 1 contains the
realizations of the angles of PQ and PV buses, the voltages of PQ buses, and the active power injection
of the slack bus. Y 2 consists of the measurements for the reactive power injections at the slack and PV
buses.

The following relationship is then estimated via partial least squares, using the SIMPLS algorithm:

[
Y 1 X2

]
=

[
X1 Y 2

]
β11 β12

β21 β22


Subsequently, for any new input x = [x⊤

1 x⊤
2]

⊤, the estimated value of y = [y⊤1 y⊤2]
⊤ is obtained

through

ŷ⊤2 =
(
x⊤
2 − x⊤

1 β̂12

)
β̂
−1

22

ŷ⊤1 = x⊤
1 β̂11 + ŷ

⊤
2 β̂21

Note that β̂22 is a square matrix, since Nx2 = Ny2 .

References

Yuxiao Liu et al. “Data-driven power flow linearization: A regression approach”. In: IEEE Transactions
on Smart Grid 10.3 (2018), pp. 2569–2580

CHAPTER 4. MODEL FITTING AND TESTING 72

4.3.5 Partial Least Squares Bundling Known/Unknown Variables (PLS_SIMY2)

Tips

• Here, the active power of the slack bus (i.e., P_ref) is grouped under Y 2, while in PLS_BDL, P_ref
sits in Y 1 as a response. Thus, this function should be used for comparison with PLS_BDL to examine
the significance of moving P_ref from being a predictor to being a response variable.

• Large linearization errors or even failures may occur if the β̂22 described in Section 4.3.4 is nearly
singular. This may arise in scenarios where, for instance, the voltages at certain PV buses are fixed
in the training dataset.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_BDLY2');

>> opt = daline.setopt('method.name', 'PLS_BDLY2');
>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_BDLY2(data);

More About

In this version of bundling, to ensure that β̂22 remains as a square matrix even after the inclusion of
the active power of the slack bus in Y 2, the voltage angle of the slack bus is added to X2. See also the
information in Section 4.3.4.

4.3.6 Partial Least Squares Bundling Known/Unknown Variables: the Open-

source Version (PLS_BDLopen)

Tips

• This method fixes the predictors as P, Q and the responses as Vm, Va in opt.variable.predictor

and opt.variable.response respectively. Changing the inputs to these function arguments will
have no effect on the final output of PLS_BDLopen.

• It should be noted that PLS_BDLopen exclusively produces errors in Vm and Va. This limitation
stems from the limited capability of the open-source code associated with [20].

• PLS_BDLopen wraps code from the open source MATLAB scripts provided by Liu et al. [20], without
modification. It deviates from PLS_BDL in that:

(i) Only active and reactive power injections (i.e., P, Q) are used as predictor variables.

(ii) The active power injection of the slack bus is assumed to be zero.

(iii) The component number, i.e., Np, used in PLS_BDLopen is neither the rank of X, nor the rank
of the centered X. PLS_BDL uses rank of the centered X as Np.

• Preliminary empirical testing suggests that PLS_BDL generally achieves significantly higher lineariza-
tion accuracy compared to PLS_BDLopen.

CHAPTER 4. MODEL FITTING AND TESTING 73

• Large linearization errors or even failures may occur if the β̂22 described in Section 4.3.4 is nearly
singular. This may arise in scenarios where, for instance, the voltages at certain PV buses are fixed
in the training dataset.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_BDLopen');

>> opt = daline.setopt('method.name', 'PLS_BDLopen');
>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_BDLopen(data);

More About

For technical details explaining the concept of bundling, see also the information in Section 4.3.4.

References

Yuxiao Liu et al. “Data-driven power flow linearization: A regression approach”. In: IEEE Transactions
on Smart Grid 10.3 (2018), pp. 2569–2580

4.3.7 Recursive Partial Least Squares with NIPALS (PLS_REC)

Additional inputs

Table 4.18: Table of parameters specific to recursive partial least squares with NIPALS.

Parameter Format Default Description

PLS.recursivePercentage float 20 Percentage of the training data set that comprises
new data. Each new observation will be learned
recursively.

PLS.outerTol float 1e-9 The tolerance for stopping the outer iteration loop
of NIPALS; this value should be very small.

PLS.innerTol float 1e-9 The tolerance for stopping the inner iteration loop
of NIPALS; this value should be very small.

Tips

• The decompositions of the updated results have a fixed computational cost because X̃[t + 1] and
Ỹ [t+ 1] have Np + 1 rows for all t. In contrast, the numbers of rows of X[t+ 1] and Y [t+ 1] are
both t + 1, grow linearly with t, and can reach the total number of observations Ns. Given that

CHAPTER 4. MODEL FITTING AND TESTING 74

Np ≪ Ns holds outside high-dimensional settings, func_algorithm_PLS_REC should be significantly
less computationally intensive than func_algorithm_PLS_REP.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_REC');

>> model = daline.fit(data, 'method.name', 'PLS_REC', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1

e-10);

>> opt = daline.setopt('method.name', 'PLS_REC', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e

-10);

>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_REC(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e-10);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e-10);

>> model = func_algorithm_PLS_REC(data, opt);

More About

Suppose that X[t] and Y [t], as determined by PLS.recursivePercentage, have already been decom-
posed into

X[t] = T [t]C[t]⊤ +E[t]

Y [t] = U [t]R[t]⊤ + F [t]

with

T [t] =
[
t[t]1 · · · t[t]Np

]
U [t] = [u[t]1 · · · u[t]Np]

When the new measurements at time step t+1, i.e., xt+1 and yt+1, are available, this method avoids
having to re-decompose X[t+ 1] and Y [t+ 1]. Instead, it computes

X̃[t+ 1] =


C[t]⊤

xt+1

 , Ỹ [t+ 1] =


Γ [t]R[t]⊤

yt+1



CHAPTER 4. MODEL FITTING AND TESTING 75

where
Γ [t] = diag(γ[t]1 · · · γ[t]Np)

with

γ[t]i =
u[t]⊤i t[t]i

t[t]⊤i t[t]i

The decomposition results are denoted by

X̃[t+ 1] = T̃ [t+ 1]C̃[t+ 1]⊤ + Ẽ[t+ 1]

Ỹ [t+ 1] = Ũ [t+ 1]R̃[t+ 1]⊤ + F̃ [t+ 1]

Substituting X̃[t + 1] and Ỹ [t + 1] as well as T̃ [t + 1] and Ũ [t + 1] into the usual explicit solution

for ordinary partial least squares, β̂ = X⊤U
(
T⊤XX⊤U

)−1
T⊤Y , generates the revised regression

coefficients.

The NIPALS algorithm is used to realize all decompositions in this method. For more details on
NIPALS, see also the information in Section 4.3.3.

References

Severin Nowak, Yu Christine Chen, and Liwei Wang. “Measurement-based optimal DER dispatch with a
recursively estimated sensitivity model”. In: IEEE Transactions on Power Systems 35.6 (2020), pp. 4792–
4802

S Joe Qin. “Recursive PLS algorithms for adaptive data modeling”. In: Computers & Chemical Engi-
neering 22.4-5 (1998), pp. 503–514

4.3.8 Recursive Partial Least Squares with NIPALS with Forgetting Factors

(PLS_RECW)

Additional inputs

Table 4.19: Table of parameters specific to recursive partial least squares with NIPALS, using forgetting
factors for observations.

Parameter Format Default Description

PLS.omega float 0.6 Forgetting factor value ϖ with a valid range from 0
to 1. The default value of 0.6 is from Nowak, Chen,
and Wang [21].

PLS.recursivePercentage float 20 Percentage of the training data set that comprises
new data. Each new observation will be learnt re-
cursively.

PLS.outerTol float 1e-9 The tolerance for stopping the outer iteration loop
of NIPALS; this value should be very small.

PLS.innerTol float 1e-9 The tolerance for stopping the inner iteration loop
of NIPALS; this value should be very small.

CHAPTER 4. MODEL FITTING AND TESTING 76

Tips

• If PLS.omega is set to a value less than 1, the weights of earlier measurements decrease exponentially
with the number of updates. Although this helps in situations where the system operating point is
changing, over time, it also causes earlier observations to take on practically insignificant weights.
Thus, to optimize prediction accuracy, the use of cross-validation for the forgetting factor PLS.omega
is recommended.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_RECW');

>> model = daline.fit(data, 'method.name', 'PLS_RECW', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'PLS.omega', 0.95, 'PLS.recursivePercentage',
30);

>> opt = daline.setopt('method.name', 'PLS_RECW', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'PLS.omega', 0.95, 'PLS.recursivePercentage', 30)

;

>> model = daline.fit(data, opt);

>> model = func_algorithm_PLS_RECW(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'PLS.omega', 0.95, 'PLS.recursivePercentage', 30);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'PLS.omega', 0.95, 'PLS.recursivePercentage', 30);

>> model = func_algorithm_PLS_RECW(data, opt);

More About

A forgetting factor, ϖ, is used to update the growing datasets X̃[t+ 1] and Ỹ [t+ 1] as

X̃[t+ 1]=


ϖC[t]⊤

xt+1

 , Ỹ [t+ 1]=


ϖΓ [t]R[t]⊤

yt+1


Parameter ϖ belongs to the range (0, 1] and can be set via cross-validation. Values of ϖ smaller than 1
cause contributions from earlier measurements to factor in less during incremental updating of the partial
least squares model.

CHAPTER 4. MODEL FITTING AND TESTING 77

References

Severin Nowak, Yu Christine Chen, and Liwei Wang. “Measurement-based optimal DER dispatch with a
recursively estimated sensitivity model”. In: IEEE Transactions on Power Systems 35.6 (2020), pp. 4792–
4802

4.3.9 Repeated Partial Least Squares with NIPALS (PLS_REP)

Additional inputs

Table 4.20: Table of parameters specific to repeated partial least squares with NIPALS.

Parameter Format Default Description

PLS.recursivePercentage float 20 Percentage of the training data set that comprises
new data. Each new observation will be learnt re-
cursively.

PLS.outerTol float 1e-9 The tolerance for stopping the outer iteration loop
of NIPALS; this value should be very small.

PLS.innerTol float 1e-9 The tolerance for stopping the inner iteration loop
of NIPALS; this value should be very small.

Tips

• This function should be used for comparison with PLS_REC in terms of computational time and
accuracy.

• In this method, the decomposition of the updated results has a computational cost that scales with
the size of the training data set.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_REP');

>> model = daline.fit(data, 'method.name', 'PLS_REP', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1

e-10);

>> opt = daline.setopt('method.name', 'PLS_REP', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e

-10);

>> model = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 78

>> model = func_algorithm_PLS_REP(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e-10);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'PLS.recursivePercentage', 50, 'PLS.innerTol', 1e-10);

>> model = func_algorithm_PLS_REP(data, opt);

More About

Suppose that X[t] and Y [t], as determined by PLS.recursivePercentage, have already been decom-
posed into

X[t] = T [t]C[t]⊤ +E[t]

Y [t] = U [t]R[t]⊤ + F [t]

With each new observation, the decomposition is re-performed using an updated:

X[t+ 1] =


X[t]

xt+1

 , Y [t+ 1] =


Y [t]

yt+1


Substituting X[t + 1] and Y [t + 1] as well as T [t + 1] and U [t + 1] into the usual explicit solution

for ordinary partial least squares, β̂ = X⊤U
(
T⊤XX⊤U

)−1
T⊤Y , generates the revised regression

coefficients.

CHAPTER 4. MODEL FITTING AND TESTING 79

4.3.10 Partial Least Squares with Clustering (PLS_CLS)

Additional inputs

Table 4.21: Table of parameters specific to partial least squares with clustering.

Parameter Format Default Description

PLS.parallel binary 1 1: Use parallel computation; otherwise 0.

PLS.clusNumInterval vector/integer [2:1:10] The discrete range of the number of clusters to
be tuned by cross-validation. If a scalar integer
is given, then use it directly without tuning.

PLS.cvNumFold integer 10 The number of folds for cross-validation tuning of
the number of clusters to be used in K-means. This
number must be divisible by the number of training
samples.

PLS.fixKmeans binary 1 1: Fix the random seed for K-means in PLS_CLS for
consistency in clustering; otherwise 0.

PLS.fixCV binary 1 1: Fix the random seed for partitioning data in CV;
otherwise 0.

PLS.fixSeed integer 88 Random seed number for K-means and CV parti-
tioning.

Tips

• The primary application of this method arises when separate linear power flow models can be fit
from different power system operating modes. Due to frequent ambiguity in the cross-validation-
determined optimal number of clusters to use in regression, this method works best when the number
of operating modes, and thus the number of clusters to be used, is already known.

Examples

>> model = daline.fit(data, 'method.name', 'PLS_CLS');

>> model = daline.fit(data, 'method.name', 'PLS_CLS', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'PLS.fixKmeans', 0, 'PLS.clusNumInterval',
[6:2:12], 'PLS.cvNumFold', 5);

>> opt = daline.setopt('method.name', 'PLS_CLS', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'PLS.fixKmeans', 0, 'PLS.clusNumInterval',
[6:2:12], 'PLS.cvNumFold', 5);

>> model = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 80

>> model = func_algorithm_PLS_CLS(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'PLS.fixKmeans', 0, 'PLS.clusNumInterval', [6:2:12], 'PLS.
cvNumFold', 5);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'PLS.fixKmeans', 0, 'PLS.clusNumInterval', [6:2:12], 'PLS.cvNumFold', 5);

>> model = func_algorithm_PLS_CLS(data, opt);

More About

X is first divided into K clusters using K-means clustering. The ordinary partial least squares method
using SIMPLS is subsequently implemented on the partitioned data from each of the K clusters, such
that the regression coefficients of the k-th segment are found as

β̂(k) =X(k)⊤U(k)
(
T (k)⊤X(k)X(k)⊤U(k)

)−1
T (k)⊤Y (k), ∀k

with U and T calculated as normal for each partition of the data.

To apply the resulting piecewise model, identify the cluster that a given input x belongs to via

k = argmin
j

∥x− µ(j)∥22

where µ(j) is the centroid of cluster j. Then, use the corresponding β̂ to generate the prediction of y as
ŷ = β̂(k)⊤x.

CHAPTER 4. MODEL FITTING AND TESTING 81

4.4 Ridge Regression Family

This class of functions covers the following algorithms:

• Ordinary ridge regression (RR)

• Ordinary ridge regression with voltage-angle coupling (RR_VCS)

• Ordinary ridge regression with K-plane clustering (RR_KPC)

• Locally weighted ridge regression (RR_WEI)

They share common parameters listed in Table 4.22.

NOTE The ridge regression model does not include a constant term. In Daline, all functions in the
ridge regression class besides RR_KPC automatically remove the column of 1s in the predictor data.

Table 4.22: Table of parameters common to all ridge-regression-based algorithms.

Parameter Format Default Description

RR.lambdaInterval vector/float 1e-10 The discrete range of tuning the regularization fac-
tor using cross-validation, e.g., [0:1e-3:0.02]. If a
scalar float is given, then use it directly without
tuning.

RR.cvNumFold integer 10 The number of folds for hyperparameter tuning via
cross-validation, e.g., for the regularization factor.
This number must be divisible by the number of
training samples.

RR.fixCV binary 1 1: Fix the random seed for partitioning data in CV;
otherwise 0.

RR.fixSeed integer 88 Random seed number for K-means and CV parti-
tioning.

Tips

• Using a larger number of folds in RR.cvNumFold leads to cross-validation errors that are closer
estimates of the generalization error. However, doing so also increases the computational burden of
CV linearly. Typically, as a compromise, the number of folds is set to 5 or 10.

• The regularization factor usually takes on a very small value. Larger values introduce bias and
result in linearization coefficient shrinkage. However, they also reduce the variance of ridge re-
gression estimates. Consequently, using cross-validation for this parameter, via giving a range for
RR.lambdaInterval, is recommended.

– In the event that more than one regularization factor returns the smallest CV error, the CV
subroutine picks the factor that appears first in RR.lambdaInterval.

4.4.1 Ordinary Ridge Regression (RR)

Examples

CHAPTER 4. MODEL FITTING AND TESTING 82

>> model = daline.fit(data, 'method.name', 'RR');

>> model = daline.fit(data, 'method.name', 'RR', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1]);

>> opt = daline.setopt('method.name', 'RR', 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1]);

>> model = daline.fit(data, opt);

>> model = func_algorithm_RR(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1]);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'RR.lambdaInterval', [0:5e-3:0.1]);

>> model = func_algorithm_RR(data, opt);

More About

This method introduces a regularization penalty (a.k.a., the Tikhonov-Phillips regularization) to the
objective function of the regression model. The resulting objective becomes

min
β

∥Y −Xβ∥22 + λ∥β∥22

where λ ∈ R is a preset tuning parameter, i.e., the regularization factor. Correspondingly, the solution
for β is

β̂ =
(
X⊤X + λI

)−1
X⊤Y

where I is an identity matrix of appropriate dimension. The parameter λ tunes the diagonal elements
(i.e., the ridge) in X⊤X to ensure the invertibility of this matrix.

References

Yanbo Chen, Chao Wu, and Junjian Qi. “Data-Driven Power Flow Method Based on Exact Linear
Regression Equations”. In: Journal of Modern Power Systems and Clean Energy (2021)

CHAPTER 4. MODEL FITTING AND TESTING 83

4.4.2 Ordinary Ridge Regression with the Voltage-angle Coupling (RR_VCS)

Additional inputs

Table 4.23: Table of parameters specific to ordinary ridge regression with VCS coordinate transformation.

Parameter Format Default Description

opt.idx function/struct func define idx A struct (or function calling a struct) that contains
the column indices of the from- and to-buses in a
MATPOWER-like mpc.branch matrix. By default,
it uses the built-in index in MATPOWER.

Tips

• This method fixes the predictors as Vm2, P, Q and the responses as Vm2, ViVjsin(θij), and ViVjsin(θij)
in opt.variable.predictor and opt.variable.response respectively. Changing the inputs to
these function arguments will have no effect on the output. From the model responses, the possible
outputs are then the voltages of all PQ buses, PF, QF, PT, and QT.

Examples

>> model = daline.fit(data, 'method.name', 'RR_VCS');

>> model = daline.fit(data, 'method.name', 'RR_VCS', 'RR.lambdaInterval', [0:5e

-3:0.1]);

>> opt = daline.setopt('method.name', 'RR_VCS', 'RR.lambdaInterval', [0:5e-3:0.1]);

>> model = daline.fit(data, opt);

>> model = func_algorithm_RR_VCS(data, 'RR.lambdaInterval', [0:5e-3:0.1]);

>> opt = daline.setopt('RR.lambdaInterval', [0:5e-3:0.1]);

>> model = func_algorithm_RR_VCS(data, opt);

More About

This method implements coordinate transformation in the form of voltage-angle coupling and voltage
squaring to transform the non-linear AC power flow equations into

Pi = GiiUi +
∑

j∈k(i),j ̸=i

(GijRij +BijCij)

CHAPTER 4. MODEL FITTING AND TESTING 84

and

Qi = −BiiUi +
∑

j∈k(i),j ̸=i

(GijCij −BijRij)

where Rij = ViVjcos(θij), Cij = ViVjsin(θij), and Ui = V 2
i . These linearizations can be used to represent

PQ buses. On the other hand, PV buses are represented by the first equation above and

V 2
i,PV = Ui

Subsequently, voltages for the PQ buses and line flows can be computed from the predicted values of Rij ,
Cij , and Ui.

References

Yanbo Chen, Chao Wu, and Junjian Qi. “Data-Driven Power Flow Method Based on Exact Linear
Regression Equations”. In: Journal of Modern Power Systems and Clean Energy (2021)

4.4.3 Ordinary Ridge Regression with K-plane Clustering (RR_KPC)

Additional inputs

Table 4.24: Table of parameters specific to ridge regression with K-plane clustering.

Parameter Format Default Description

RR.etaInterval vector/float logspace(2, 5, 4) The discrete range of tuning η (as explained below)
using cross-validation, e.g., logspace(2, 5, 4). If a
scalar float is given, then use it directly without
tuning.

RR.kplaneMaxIter integer 1e5 The maximum number of iterations allowed when
performing K-plane clustering. This method usu-
ally converges within 10 iterations.

RR.fixKmeans binary 1 1: Fix the random seed for K-means in RR_KPC for
consistency in clustering; otherwise 0 (K-means is
used for initialization).

RR.fixSeed integer 88 Random seed number for K-means.

RR.clusNumInterval vector/integer [2:1:10] The discrete range of the number of clusters for
tuning via cross-validation. If an integer is given,
the cluster number is fixed to this value.

Tips

• Tuning the regularization factor λ, η, and the number of clusters by cross-validation can be very time-
consuming. Instead of setting the regularization factor or η to an arbitrary value, it is recommended
that they be tuned in tandem, as their optimal values are codependent.

CHAPTER 4. MODEL FITTING AND TESTING 85

• Assuming a sufficiently large training data set, this method generally returns lower errors as the
number of clusters increases. However, gains in accuracy may taper off after a point.

Examples

>> model = daline.fit(data, 'method.name', 'RR_KPC');

>> model = daline.fit(data, 'method.name', 'RR_KPC', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-2:0.1], 'RR.
etaInterval', logspace(-3, 3, 7), 'RR.clusNumInterval', [2:2:10]);

>> opt = daline.setopt('method.name', 'RR_KPC', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-2:0.1], 'RR.
etaInterval', logspace(-3, 3, 7), 'RR.clusNumInterval', [2:2:10]);

>> model = daline.fit(data, opt);

>> model = func_algorithm_RR_KPC(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-2:0.1], 'RR.etaInterval',
logspace(-3, 3, 7), 'RR.clusNumInterval', [2:2:10]);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'RR.lambdaInterval', [0:5e-2:0.1], 'RR.etaInterval', logspace(-3, 3, 7), 'RR.
clusNumInterval', [2:2:10]);

>> model = func_algorithm_RR_KPC(data, opt);

More About

This method fits the AC power flow model in a piecewise manner, with each piece represented by a ridge
regression model trained on its own cluster of data points. Unlike clustering-based least squares in 4.2.11,
here, ridge regression is embedded into each iteration of the clustering.

For [S(k)n,µ(k)n, β̂(k)n], where n indicates the iteration number, S(k)n consists of xi belonging
to cluster k, µ(k)n denotes the centroid of cluster k, and β̂(k)n represents the regression coefficient for
cluster k, in each iteration,

(i) β̂(k)n is updated via

β̂(k)n+1 =
[
X(k)⊤X(k) + λI

]−1
X(k)⊤Y (k), ∀k

where X(k) is composed of xi ∈ S(k)n while Y (k) collects yi that correspond to xi ∈ S(k)n.
(ii) µ(k)n is updated via

µ(k)n+1 =
∑

xi∈S(k)n

xi

|S(k)n|
, ∀k

CHAPTER 4. MODEL FITTING AND TESTING 86

where | · | denotes the cardinality function.

(iii) xi (∀i) is re-allocated to cluster k, where

k = argmin
j

∥y⊤i − x⊤
i β̂(j)

n+1∥2F + η∥xi − µ(j)n+1∥2F

(iv) Repeat the above steps until convergence, i.e., the variations within µ and β̂ are negligible.

To apply the obtained piecewise linear power flow model, the cluster to which a given input x belongs
to is identified with

k = argmin
j

∥x− µ(j)∥22

Then, x is substituted into ŷ = β̂(k)⊤x to predict the value of y.

References

Jiaqi Chen, Wenchuan Wu, and Line A Roald. “Data-driven Piecewise Linearization for Distribution
Three-phase Stochastic Power Flow”. In: IEEE Transactions on Smart Grid (2021)

4.4.4 Locally Weighted Ridge Regression (RR_WEI)

Additional inputs

Table 4.25: Table of parameters specific to locally weighted ridge regression.

Parameter Format Default Description

RR.tauInterval vector/float [0.1:1e-3:0.35] The discrete range of τ (as explained below) for
cross-validation. If a scalar is given, then use it
directly without tuning.

Tips

• Tuning both the regularization factor λ and τ by cross-validation can be very time-consuming.
Usually, λ has a greater impact on the results of this method than τ .

Examples

>> model = daline.fit(data, 'method.name', 'RR_WEI');

>> model = daline.fit(data, 'method.name', 'RR_WEI', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1], 'RR.
tauInterval', [0.1:1e-2:0.3]);

CHAPTER 4. MODEL FITTING AND TESTING 87

>> opt = daline.setopt('method.name', 'RR_WEI', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1], 'RR.
tauInterval', [0.1:1e-2:0.3]);

>> model = daline.fit(data, opt);

>> model = func_algorithm_RR_WEI(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'RR.lambdaInterval', [0:5e-3:0.1], 'RR.tauInterval',
[0.1:1e-2:0.3]);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'RR.lambdaInterval', [0:5e-3:0.1], 'RR.tauInterval', [0.1:1e-2:0.3]);

>> model = func_algorithm_RR_WEI(data, opt);

More About

This method trains local models around the target operating point(s), weighting data points that are
closer to the operating point of interest more heavily. Consequently, the objective function becomes

min
β

∥W
1
2 (Y −Xβ)∥22 + λ∥β∥22

where W is a diagonal weight matrix. If the power flow model at time step t is of interest, the i-th
diagonal element of W is defined as

wi = e−
d2i
2τ2 , with di = ∥xi − xt∥2

The solution to the minimization problem is given by

β̂ =
(
X⊤WX + λI

)−1
X⊤WY

References

Junbo Zhang et al. “Locally weighted ridge regression for power system online sensitivity identification
considering data collinearity”. In: IEEE Transactions on Power Systems 33.2 (2017), pp. 1624–1634

CHAPTER 4. MODEL FITTING AND TESTING 88

4.5 Support Vector Regression Family

This class of functions covers the following algorithms:

• Ordinary support vector regression: a direct solution (SVR)

• Support vector regression with polynomial kernel (SVR_POL)

• Support vector regression with ridge regression (SVR_RR)

• Support vector regression with chance-constrained programming (SVR_CCP)

General Inputs

Table 4.26: Table of parameters common to all support vector regression algorithms that directly solve
the SVR program (SVR, SVR_CCP, SVR_RR).

Parameter Format Default Description

SVR.epsilon float 1e-4 The value of ϵ; defines the margin within which
errors are discounted from the SVR loss.

SVR.omega float 10 The value of ω, which determines the trade-off be-
tween the ℓ2 regularization of β and the degree to
which errors greater than ϵ are accepted.

SVR.programType character ’indivi’ ’whole’ puts all responses (i.e., the number of
columns in Y) into one optimization program to
solve for all β̂ at once; ’indivi’ solves for β̂ individu-
ally by building one optimization program for each
response.

SVR.language character ’yalmip’ Optimization toolbox to formulate the program-
ming problem. Choose between ’cvx’ or ’yalmip’.

SVR.parallel binary 1 1: Use parallel computation; otherwise 0.
Only valid when SVR.language = ’yalmip’ and
SVR.programType = ’indivi’, because to the best
of the developers’ knowledge, cvx does not support
parallel computing.

SVR.solver character ’quadprog’ Solver options: ’quadprog’, ’Gurobi’ (’quadprog’ is
built in the MATLAB Optimization Toolbox; for
’Gurobi’, you need to install it manually).

SVR.cvxQuiet binary 1 1: Suppress CVX output in the command window;
otherwise 0.

SVR.yalDisplay binary 0 1: Show YALMIP display; otherwise 0.

General Tips

• Smaller values of SVR.epsilon, ϵ, penalize more data points. As ϵ→ 0+, SVR may start behaving
similarly to ridge regression with regularization hyperparameter λ = 1

2 . Conversely, larger ϵ values
admit larger errors in the ϵ-insensitive loss.

CHAPTER 4. MODEL FITTING AND TESTING 89

• Smaller values of SVR.omega, ω, cause more data points to be considered as outliers that contribute
to the ϵ-insensitive cost. In contrast, large values of ω result in a larger ϵ tube around the regression
hyperplane that accommodate outliers better, but may represent the overall data more poorly.

• The values of ϵ and ω interact with each other. Ideally, hyperparameter tuning via a method
such as cross-validation should be performed, but is typically tricky to do. Cross-validation is not
available in the current versions of the algorithms that directly solve the SVR program. It should
be noted that the value of ϵ is also significantly influenced by whether the data are normalized
— normalization alters the scale of the data, which in turn affects the metric used to differentiate
between inliers and outliers.

More About

Support vector regression adopts the ϵ-insensitive error function

max
{
0, ∥yij − x⊤

i βj∥1 − ϵ
}

as its objective function, such that only absolute errors greater than ϵ are accounted for during model
fitting. The ϵ-insensitive error offers a higher tolerance for data outliers compared to the ℓ1 and ℓ2 norms.

Since the ϵ-insensitive error function is not differentiable everywhere, slack variables are introduced
for relaxation. The resulting regression model becomes

min
β, ξij , ξ⋆ij

1

2
∥β∥22 + ω

∑Ns

i=1

∑Ny

j=1

(
ξij + ξ⋆ij

)
s.t. yij − x⊤

i βj ≤ ϵ+ ξij , ∀i, j

x⊤
i βj − yij ≤ ϵ+ ξ⋆ij , ∀i, j

ξij , ξ
⋆
ij ≥ 0, ∀i, j

where hyperparameters ω and ϵ can be determined via cross-validation.

References

Alex J Smola and Bernhard Schölkopf. “A tutorial on support vector regression”. In: Statistics and
computing 14.3 (2004), pp. 199–222

4.5.1 Ordinary Support Vector Regression: a Direct Solution (SVR)

Tips

• Currently, only ’indivi’ is supported as a valid argument for SVR.programType for the current version
of Daline.

• It is highly recommended to use ’yalmip’ as the language, ’quadprog’ as the solver, and ’indivi’ as
the type of programming.

Examples

CHAPTER 4. MODEL FITTING AND TESTING 90

>> model = daline.fit(data, 'method.name', 'SVR');

>> model = daline.fit(data, 'method.name', 'SVR', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'SVR.omega', 25, 'SVR.language', 'yalmip', 'SVR.
programType', 'indivi', 'SVR.solver', 'quadprog');

>> opt = daline.setopt('method.name', 'SVR', 'variable.predictor', {'P', 'Q'}, 'variable
.response', {'PF', 'Vm'}, 'SVR.omega', 25, 'SVR.yalDisplay', 1);

>> model = daline.fit(data, opt);

>> model = func_algorithm_SVR(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'SVR.omega', 25, 'SVR.yalDisplay', 1);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'SVR.omega', 25, 'SVR.yalDisplay', 1);

>> model = func_algorithm_SVR(data, opt);

References

Jiaqi Chen et al. “Robust Data-driven Linearization for Distribution Three-phase Power Flow”. In: 2020
IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). IEEE. 2020, pp. 1527–
1532

CHAPTER 4. MODEL FITTING AND TESTING 91

4.5.2 Support Vector Regression with Polynomial Kernel (SVR_POL)

Inputs

Table 4.27: Table of parameters specific to all support vector regression algorithms that use MATLAB’s
built-in regressor (SVR_POL).

Parameter Format Default Description

SVR.parallel binary 1 1: Use parallel computation; otherwise 0.

SVR.tune binary 0 1: Tune ϵ automatically using cross-validation; oth-
erwise 0.

SVR.KFold vector/integer 5 When SVR.tune = 1, specifies the number of folds
used in cross-validation.

SVR.default binary 1 1: Use the default ϵ, i.e., iqr(Y)/1.349; otherwise
0.

SVR.epsilon vector/float 1e-4 A predefined ϵ (defines the margin within which
errors are discounted from the SVR loss) when
opt.SVR.tune and opt.SVR.default are both 0.

Tips

• Unless the predictor data set is very large, data normalization is recommended.

• When SVR.tune = 1, cross-validation is conducted among log-scaled values in the range [1e-3,

1e2]*iqr(Y)/1.349, where iqr(Y)/1.349 is an estimate of one-tenth of the standard deviation,
using the interquartile range of the response variable Y . Note that computational times are generally
very long when conducting CV here.

• The built-in MATLAB function fitrsvm used for this subgroup of methods applies the sequential
minimal optimization routine by default to solve the dual problem of the support vector regression.
See Smola and Schölkopf [58] for more details.

Examples

>> model = daline.fit(data, 'method.name', 'SVR_POL');

>> model = daline.fit(data, 'method.name', 'SVR_POL', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'SVR.default', 0, 'SVR.epsilon', 0.05);

>> opt = daline.setopt('method.name', 'SVR_POL', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'SVR.default', 0, 'SVR.epsilon', 0.05);

>> model = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 92

>> model = func_algorithm_SVR_POL(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'SVR.default', 0, 'SVR.epsilon', 0.05);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'SVR.default', 0, 'SVR.epsilon', 0.05);

>> model = func_algorithm_SVR_POL(data, opt);

More About

In kernel-based support vector regression, each realization of x, i.e., xi, is first projected to a Nϕ-
dimensional space via the mapping function ϕ(xi). The support vector regression model then becomes

min
βϕ, ξij , ξ⋆ij

1

2
∥βϕ∥22 + ω

∑Ns

i=1

∑Ny

j=1

(
ξij + ξ⋆ij

)
s.t. yij − ϕ(xi)

⊤βϕj ≤ ϵ+ ξij , ∀i, j

ϕ(xi)
⊤βϕj − yij ≤ ϵ+ ξ⋆ij , ∀i, j

ξij , ξ
⋆
ij ≥ 0, ∀i, j

where βϕj refers to the j-th column of βϕ.

Calculation of the inner product ⟨ϕ(xi), ϕ(xj)⟩ ∀i, j is necessary when solving the above problem. If
using the polynomial kernel, the inner product is easily calculated as

⟨ϕ(xi), ϕ(xj)⟩ = h (⟨xi,xj⟩) = (x⊤
i xj + 1)d

where h(·) is a scalar function. SVR_POL sets d = 3 by default; i.e., a cubic kernel is used.

References

Jiafan Yu, Yang Weng, and Ram Rajagopal. “Robust mapping rule estimation for power flow analysis
in distribution grids”. In: 2017 North American Power Symposium (NAPS). IEEE. 2017, pp. 1–6

CHAPTER 4. MODEL FITTING AND TESTING 93

4.5.3 Support Vector Regression with Ridge Regression (SVR_RR)

Additional inputs

Table 4.28: Table of parameters specific to support vector regression with ridge regression.

Parameter Format Default Description

SVR.lambda float 1e-10 The regularization factor for the ridge regression
component.

SVR.PCA binary 1 1: Use principal component analysis (PCA) to re-
duce data collinearity; otherwise 0.

SVR.numComponentRatio float 70 Unit: %, i.e., the proportion of the number of prin-
cipal components w.r.t. the number of predictors.

Tips

• The ∥β∥22 term in SVR’s objective function has a large coefficient of 1
2 by default so that the regressed

function can be as flat as possible; i.e., β is desired to be small. However, such regularization may
regulate the variance too strongly and result in strong bias.

• In the current version of Daline, only ’indivi’ is supported as a valid argument for SVR.programType.

• It is highly recommended to use ’yalmip’ as the language, ’quadprog’ as the solver, and ’indivi’ as
the type of programming.

Examples

>> model = daline.fit(data, 'method.name', 'SVR_RR');

>> model = daline.fit(data, 'method.name', 'SVR_RR', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'SVR.lambda', -0.4999, 'SVR.PCA', 0, 'SVR.language
', 'yalmip', 'SVR.programType', 'indivi', 'SVR.solver', 'quadprog');

>> opt = daline.setopt('method.name', 'SVR_RR', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'SVR.lambda', -0.4999, 'SVR.PCA', 0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_SVR_RR(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'SVR.lambda', -0.4999, 'SVR.PCA', 0);

CHAPTER 4. MODEL FITTING AND TESTING 94

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'SVR.lambda', -0.4999, 'SVR.PCA', 0);

>> model = func_algorithm_SVR_RR(data, opt);

More About

To confer additional control over the level of regularization performed in SVR, a tunable regularization
term can be further introduced into the objective function as

min
β, ξij , ξ⋆ij

1

2
∥β∥22 + ω

∑Ns

i=1

∑Ny

j=1

(
ξij + ξ⋆ij

)
+ λ∥β∥22

As done in [29], the option to perform PCA on the predictor matrix X before fitting an SVR model
is offered. See subsection 4.2.5 for more details.

References

Penghua Li et al. “A Data-Driven Linear Optimal Power Flow Model for Distribution Networks”. In:
IEEE Transactions on Power Systems (2022)

4.5.4 Support Vector Regression with Chance-constrained Programming (SVR_CCP)

Additional inputs

Table 4.29: Table of parameters specific to support vector regression with chance-constrained program-
ming.

Parameter Format Default Description

SVRCC.probThreshold float 95 Probability threshold, ζCCP
j (as explained below),

of the chance-constrained programming to solve
SVR. Unit: %.

SVRCC.bigM float 1e6 The value of big M when using chance-constrained
programming to solve SVR.

Tips

• The function parameters specified in Table 4.26 should use a prefix of SVRCC instead of SVR.

• It is recommended that SVRCC.programType be set to ’indivi’, as the solution of an overall model
usually requires long compute times and may cause MATLAB to hang. Naturally, the resultant
optimal β̂ will also differ between the two approaches. Additionally, it is recommended to use
’yalmip’ as the language and ’Gurobi’ as the solver. Note that ’Gurobi’ is an external, commercial
solver that requires additional, separate installation procedure (this is one of the only two cases
where ’Gurobi’ is recommended in Daline; see Section 2.2 for more details about the installation
of ’Gurobi’).

CHAPTER 4. MODEL FITTING AND TESTING 95

• Preliminary empirical testing suggests that, this method outperforms normal SVR in the presence
of data outliers. In situations without outliers, SVR_CC may encounter difficulties with convergence
when ϵ is small; e.g., 1e-4. This issue can be circumvented by increasing the size of ϵ; e.g., to 1e-3.
However, in such cases where there are no outliers, simply using SVR is more accurate and faster
because it does not use binary variables.

• Although this method avoids tuning ω, it introduces another hyperparameter, the probability thresh-
old ζCCP

j . Thus, the challenge of setting hyperparameter values remains.

• Despite the j subscript, the current implementation of SVR_CC assigns a uniform probability thresh-
old ζCCP for all dependent variables in Y .

Examples

>> model = daline.fit(data, 'method.name', 'SVR_CCP');

>> model = daline.fit(data, 'method.name', 'SVR_CCP', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF', 'Vm'}, 'SVRCC.epsilon', 1e-3, 'SVRCC.probThreshold',
0.95);

>> opt = daline.setopt('method.name', 'SVR_CCP', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF', 'Vm'}, 'SVRCC.epsilon', 1e-3, 'SVRCC.probThreshold',
0.95);

>> model = daline.fit(data, opt);

>> model = func_algorithm_SVR_CCP(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'Vm'}, 'SVRCC.epsilon', 1e-3, 'SVRCC.probThreshold', 0.95);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'SVRCC.epsilon', 1e-3, 'SVRCC.probThreshold', 0.95);

>> model = func_algorithm_SVR_CCP(data, opt);

More About

Chance-constrained programming avoids the challenge of tuning ω by removing the tolerance of residuals;
i.e., the ω

∑Ns
i=1

∑Ny

j=1(ξij + ξ⋆ij) term in the SVR objective function, together with its corresponding
constraints. Instead, single-chance constraints are added to restrict residuals, resulting in the model

min
β

1

2
∥β∥22

s.t. P
{
∥Yj −X⊤βj∥1 ≤ ϵ

}
≥ ζCCP

j , ∀j

where X ∈ RNs×Nx is adopted over X to highlight that X is now Ns realisations of a multivariate
random variable of dimension RNx . In addition, Yj ∈ R refers to the j-th dependent variable in Y ,

CHAPTER 4. MODEL FITTING AND TESTING 96

which should also be considered as Ns realisations of a multivariate random variable of dimension RNy .
The constant ζCCP

ij ∈ R is a predefined percentage threshold.

To solve the above problem, the big-M method is employed to convert it into a mixed-integer linear
programming problem, based on the scenarios of Yj and X . The problem then takes the form

min
β

1

2
∥β∥22

s.t. Yj −X⊤βj ≤ ϵ+M(1− zj), ∀j

X⊤βj −Yj ≤ ϵ+M(1− zj), ∀j
1

Ns

∑Ns

i=1
zij ≥ ζCCP

j , ∀j

zij ∈ {0, 1} ∀i, j

M ≫ ϵ

where zj ∈ RNs×1 comprises of scalar elements zij .

In the case where SVRCC.programType is set to ’indivi’, the constraints for only one value of j are
implemented in the above optimization formulation. The problem is solved Ny times, once for each

column in Y , and the resulting β̂ from each solution are concatenated column-wise.

References

Zhentong Shao et al. “A linear AC unit commitment formulation: An application of data-driven linear
power flow model”. In: International Journal of Electrical Power & Energy Systems 145 (2023), p. 108673

CHAPTER 4. MODEL FITTING AND TESTING 97

4.6 Linearly Constrained Programming Family

This class of functions covers the following approaches:

• Linearly constrained programming with box constraints (LCP_BOX)

• Linearly constrained programming without box constraints (LCP_BOXN)

• Linearly constrained programming with Jacobian guidance constraints, using unnormalized data
(LCP_JGD)

• Linearly constrained programming without Jacobian guidance constraints, using unnormalized data
(LCP_JGD)

• Linearly constrained programming with coupling constraints (LCP_COU, LCP_COU2)

• Linearly constrained programming without coupling constraints (LCP_COUN, LCP_COUN2)

4.6.1 General Inputs

Table 4.30: Table of parameters common to all linearly constrained programming approaches.

Parameter Format Default Description

LCP.solver character ’Mosek’ Solver options; choose amongst ’quadprog’,
’Gurobi’, ’SDPT3’ and ’SeDuMi’(’SDPT3’ and ’Se-
DuMi’ are included in Daline via CVX; ’quadprog’
is built in the MATLAB Optimization Toolbox; for
’Gurobi’, you need to install it manually). For
LCP_JGD and LCP_JGDN, the solver is fixed to be
’SDPT3’, without which solutions cannot be found.

LCP.cvxQuiet binary 1 1: Suppress CVX output in the command window;
otherwise 0.

4.6.2 General Tips

• In the event that a program is interrupted while CVX is midway through solving, input the following
codes into the MATLAB command window to shut down the CVX process. This will prevent future
errors in calling/selecting the CVX solver, e.g., “The global CVX solver selection cannot be changed
while a model is being constructed.”

>> cvx_begin;

>> cvx_end;

4.6.3 Linearly Constrained Programming with Box Constraints (LCP_BOX)

Tips

• This method fixes the predictors as P, Q and the responses as Vm, Va in variable.predictor and
variable.response respectively. Changing the inputs to these function arguments will have no

CHAPTER 4. MODEL FITTING AND TESTING 98

effect on the output. Note that this also means that the known voltages of PV buses is not used in
the DPFL model training, leading to a possibly significant loss of information.

• It is recommended to use ’SeDuMi’ as the solver.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_BOX');

>> model = daline.fit(data, 'method.name', 'LCP_BOX', 'LCP.solver', 'SeDuMi', 'LCP.
cvxQuiet', 1);

>> opt = daline.setopt('method.name', 'LCP_BOX', 'LCP.solver', 'SeDuMi', 'LCP.cvxQuiet',
0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_BOX(data, 'LCP.solver', 'SeDuMi', 'LCP.cvxQuiet', 0);

>> opt = daline.setopt('LCP.solver', 'SeDuMi', 'LCP.cvxQuiet', 0);

>> model = func_algorithm_LCP_BOX(data, opt);

More About

This method solves an optimization problem with the objective function min
β

∥Y − Xβ∥22 and box

constraints. It relies on computation of the Jacobian matrix

J =
dx

dy

where x refers to the active and reactive power injections, and y to voltage magnitudes and angles, of a
single observation. At around operating point 0,

J0 =
dx

dy

∣∣∣∣
0

≈ x− x0

y − y0

A first-order Taylor approximation around y can therefore be derived as

y ≈ y0 + J−1
0 x− J−1

0 x0

CHAPTER 4. MODEL FITTING AND TESTING 99

which can also be represented as

y⊤ =

[
1 x⊤

]
y⊤0 − x⊤

0 J
−1⊤
0

J−1⊤
0


︸ ︷︷ ︸

β̃

for each data point x.

Consequently, β̃ can be used as box constraints for β in a linearly-constrained program; i.e.,

β̃min ≤ β ≤ β̃max

when many samples around the operating point 0 have been taken.

References

Yuxiao Liu et al. “Bounding regression errors in data-driven power grid steady-state models”. In: IEEE
Transactions on Power Systems 36.2 (2020), pp. 1023–1033

4.6.4 Linearly Constrained Programming without Box Constraints (LCP_BOXN)

Tips

• This function should be used for comparison with LCP_BOXN to examine the effects of adding box
constraints.

• See also the tips in Section 4.6.3.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_BOXN');

>> model = daline.fit(data, 'method.name', 'LCP_BOXN', 'LCP.solver', 'SeDuMi' , 'LCP.
cvxQuiet', 1);

>> opt = daline.setopt('method.name', 'LCP_BOXN', 'LCP.solver', 'SeDuMi', 'LCP.cvxQuiet
', 0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_BOXN(data, 'LCP.solver', 'SeDuMi', 'LCP.cvxQuiet', 0);

CHAPTER 4. MODEL FITTING AND TESTING 100

>> opt = daline.setopt('LCP.solver', 'SeDuMi', 'LCP.cvxQuiet', 0);

>> model = func_algorithm_LCP_BOXN(data, opt);

More About

This method solves an optimization problem with the objective function min
β

∥Y −Xβ∥22 and no con-

straints.

References

Yuxiao Liu et al. “Bounding regression errors in data-driven power grid steady-state models”. In: IEEE
Transactions on Power Systems 36.2 (2020), pp. 1023–1033

4.6.5 Linearly Constrained Programming with Jacobian Guidance Constraints

(LCP_JGD)

Tips

• This method fixes the predictors as P, Q and the responses as Vm, Va in variable.predictor and
variable.response respectively. Changing the inputs to these function arguments will have no
effect on the output. The predictors are denoted by Y and the responses by X in the section
detailing LCP_JGD below. However, note that there are known and unknown variables in Y and
X; i.e., not all “predictors” are known and not all “responses” are unknown, as LCP_JGD uses the
bundling strategy for known and unknown variables; see Section 4.3.4 for more details of this
bundling strategy.

• To improve solving success rates, using unnormalized data for training is strongly recommended.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_JGD');

>> model = daline.fit(data, 'method.name', 'LCP_JGD', 'LCP.cvxQuiet', 0);

>> opt = daline.setopt('method.name', 'LCP_JGD', 'LCP.cvxQuiet', 0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_JGD(data, 'LCP.cvxQuiet', 0);

>> opt = daline.setopt('LCP.cvxQuiet', 0);

>> model = func_algorithm_LCP_JGD(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 101

More About

This method solves the LCQP

min
β,C,

βB ,βG,βP ,βQ

∥Y −Xβ⊤ −C∥22

s.t. β =


βB −βG

βG βB

+


−βQ βP

βP βQ


where β is square and of dimension equal to the number of voltage and voltage angle responses, βB

and βG are symmetric, and βP and βQ are diagonal matrices. C is a matrix of constant terms and is
included here because β does not contain a column of 1’s under this formulation.

The constraints in the above problem are termed the Jacobian matrix-guided contraints, so named
through the observation in [14] that the values of β are similar to those in the Jacobian matrix of the
ACPF equations. By assuming that sin θij ≪ cos θij holds in power systems, the Jacobian matrix can be
simplified to achieve the symmetrical structure reflected in the constraint.

Finally, the bundling technique is applied to the known and unknown variables. By decomposing β
and C, the linearized PF equations can be expressed as

Y 1

Y 2

 =


β11 β12

β21 β22



X1

X2

+


C1

C2



in which Y 1 =

[
P⊤

PQ P⊤
PV Q⊤

PQ

]⊤

and X2 =

[
θ⊤Vθ V ⊤

PV V ⊤
Vθ

]⊤

are known variables, while Y 2 =[
P⊤

Vθ Q⊤
PV Q⊤

Vθ

]⊤

and X1 =

[
θ⊤PQ θ⊤PV V ⊤

PQ

]⊤

are unknown variables. With this, the unknown

X1 and Y 2 can be calculated using the estimates from the LCQP as

X̂1 = β̂
−1

11

(
Y 1 − β̂12X2 − Ĉ1

)
Ŷ 2 = β̂21X̂1 + β̂22X̂2 + Ĉ2

References

Yuxiao Liu et al. “A data-driven approach to linearize power flow equations considering measurement
noise”. In: IEEE Transactions on Smart Grid 11.3 (2019), pp. 2576–2587

CHAPTER 4. MODEL FITTING AND TESTING 102

4.6.6 Linearly Constrained Programming without Jacobian Guidance Con-

straints (LCP_JGDN)

Tips

• This function should be used for comparison with LCP_JGD to examine the effects of adding Jacobian
matrix-guided constraints.

• See also the tips in Section 4.6.5.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_JGDN');

>> model = daline.fit(data, 'method.name', 'LCP_JGDN', 'LCP.cvxQuiet', 0);

>> opt = daline.setopt('method.name', 'LCP_JGDN', 'LCP.cvxQuiet', 0);

>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_JGDN(data, 'LCP.cvxQuiet', 0);

>> opt = daline.setopt('LCP.cvxQuiet', 0);

>> model = func_algorithm_LCP_JGDN(data, opt);

More About

This method solves the LCQP

min
β,C

∥Y −Xβ⊤ −C∥22 (4.5)

without any additional constraints. For details on how the unknown variables in X and Y are found,
see also the information in Section 4.6.5.

References

Yuxiao Liu et al. “A data-driven approach to linearize power flow equations considering measurement
noise”. In: IEEE Transactions on Smart Grid 11.3 (2019), pp. 2576–2587

CHAPTER 4. MODEL FITTING AND TESTING 103

4.6.7 Linearly Constrained Programming with Coupling Constraints (LCP_COU

and LCP_COU2)

Additional inputs

Table 4.31: Table of parameters specific to linearly constrained programming with coupling constraints.

Parameter Format Default Description

opt.idx function/struct func define idx A struct (or function calling a struct) that contains
the column indices of the from- and to-buses in a
MATPOWER-like mpc.branch matrix. By default,
it uses the built-in index in MATPOWER.

LCP.coupleDelta float 1e-2 A small non-negative value, δ, to define the bounds
for the coupling constraints.

Tips

• This method fixes the predictors as Va, Vm (or Va, Vm2 in the case of LCP_COU2) and the responses as
PF, PT, QF, QT in opt.variable.predictor and opt.variable.response respectively. Chang-
ing the inputs to these function arguments will have no effect on the output.

• LCP_COU and LCP_COU2 require a prior installation of the CVX optimization toolbox and the desired
solvers (e.g., Gurobi, Mosek) to be used.

• The only difference between LCP_COU and LCP_COU2 is that LCP_COU fixes Va, Vm as the predictors
while LCP_COU2 fixes Va, Vm2 as the predictors. Hence, while the following examples are based on
LCP_COU, they are applicable to LCP_COU2 as well.

• It is recommended to use ’quadprog’ as the solver.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_COU');

>> model = daline.fit(data, 'method.name', 'LCP_COU', 'LCP.coupleDelta', 1e-3, 'LCP.
solver', 'quadprog');

>> opt = daline.setopt('method.name', 'LCP_COU', 'LCP.coupleDelta', 1e-3, 'LCP.solver',
'quadprog');

>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_COU(data, 'LCP.coupleDelta', 1e-3, 'LCP.solver', '
quadprog');

CHAPTER 4. MODEL FITTING AND TESTING 104

>> opt = daline.setopt('LCP.coupleDelta', 1e-3, 'LCP.solver', 'quadprog');
>> model = func_algorithm_LCP_COU(data, opt);

More About

This method exploits the strong correlation between certain elements in β arising from the physical
dependencies within power systems. In the AC line flow model, voltage angles always appear in the form
θnm = θn − θm. Thus, when predicting power flows based on the voltages and angles of buses n and m,
the coefficients in front of θn and θm in the DPFL model should be exactly opposite, i.e., βnj + βmj = 0.
This constraint can be slightly relaxed for practical use as

−δ ≤ βnj + βmj ≤ δ

where δ ∈ R is a pre-set, non-negative small value.

The resulting optimization problem is formulated as

min
β

∥Y −Xβ∥22

s.t. Y j = βnjθn + βmjθm + βn′jV n + βm′jV m + βcj ∀j ∈ Ny

− δ ≤ βnj + βmj ≤ δ ∀j ∈ Ny

where θn, θm, V n, and V m are the columns in X representing the voltage angles and magnitudes of
buses n and m. n and m are thus the buses between which flows Y j . In the case of LCP_COU2, the
squared voltages V 2

n and V 2
m are used in place of V n and V m.

References

Yuxiao Liu et al. “Bounding regression errors in data-driven power grid steady-state models”. In: IEEE
Transactions on Power Systems 36.2 (2020), pp. 1023–1033

4.6.8 Linearly Constrained Programming without Coupling Constraints (LCP_COUN

and LCP_COUN2)

Additional inputs

Table 4.32: Table of parameters specific to linearly constrained programming without coupling con-
straints.

Parameter Format Default Description

opt.idx function/struct func define idx A struct (or function calling a struct) that contains
the column indices of the from- and to-buses in a
MATPOWER-like mpc.branch matrix. By default,
it uses the built-in index in MATPOWER.

CHAPTER 4. MODEL FITTING AND TESTING 105

Tips

• LCP_COUN and LCP_COUN2 should be used for comparison with LCP_COU and LCP_COU2 respectively,
to examine the effects of adding coupling constraints.

• See also the tips in Section 4.6.7.

• The only difference between LCP_COUN and LCP_COUN2 is that LCP_COUN fixes Va, Vm as the pre-
dictors while LCP_COUN2 fixes Va, Vm2 as the predictors. Hence, while the following examples are
based on LCP_COUN, they are applicable to LCP_COUN2 as well.

Examples

>> model = daline.fit(data, 'method.name', 'LCP_COUN');

>> model = daline.fit(data, 'method.name', 'LCP_COUN', 'LCP.solver', 'quadprog');

>> opt = daline.setopt('method.name', 'LCP_COUN', 'LCP.solver', 'quadprog');
>> model = daline.fit(data, opt);

>> model = func_algorithm_LCP_COUN(data, 'LCP.solver', 'quadprog');

>> opt = daline.setopt('LCP.solver', 'quadprog');
>> model = func_algorithm_LCP_COUN(data, opt);

More About

This method solves the LCQP

min
β

∥Y −Xβ∥22

s.t. Y j = βnjθn + βmjθm + βn′jV n + βm′jV m + βcj ∀j ∈ Ny

where θn, θm, V n, and V m are the columns in X representing the voltage angles and magnitudes of
buses n and m. n and m are thus the buses between which flows Y j . In the case of LCP_COUN2, the
squared voltages V 2

n and V 2
m are used in place of V n and V m.

References

Yuxiao Liu et al. “Bounding regression errors in data-driven power grid steady-state models”. In: IEEE
Transactions on Power Systems 36.2 (2020), pp. 1023–1033

CHAPTER 4. MODEL FITTING AND TESTING 106

4.7 Distributionally Robust Chance-constrained Programming

Family

This class of functions covers the following algorithms:

• Moment-based distributionally robust chance-constrained programming with X as random variable
(DRC_XM)

• Moment-based distributionally robust chance-constrained programming with X and Y as random
variables (DRC_XYM)

• Divergence-based distributionally robust chance-constrained programming withX and Y as random
variables (DRC_XYD)

General Inputs

Table 4.33: Table of parameters common to all distributionally robust chance-constrained programming
approaches.

Parameter Format Default Description

DRC.programType character ’indivi’ ’whole’ puts all responses (i.e., the number of
columns in Y) into one optimization program to
solve for all β̂ at once; ’indivi’ solves for β̂ individu-
ally by building one optimization program for each
response.

DRC.epsilon float 1e-4 The threshold, ϵ, within which residuals must fall
in the distributionally robust chance constraint.

DRC.probThreshold float 95 Unit: %, i.e., the probability threshold ζDRC of
the distributionally robust chance constraint. Must
take a value from 0 to 100.

DRC.starIDX character/integer ’end’ Index of the operating point of interest in the
training dataset; should be less than or equal to
opt.num.trainSample, e.g., DRC.starIDX = 200
when opt.num.trainSample is 300. If its argument
is ’end’, the method uses the last sample in the
training dataset as the operating point of interest.

DRC.language character ’yalmip’ Optimization toolbox to formulate the program-
ming problem. Choose between ’cvx’ or ’yalmip’.

DRC.parallel binary 1 1: Use parallel computation; otherwise 0.
Only valid when DRC.language = ’yalmip’ and
DRC.programType = ’indivi’, because to the best
of the developers’ knowledge, cvx does not support
parallel computing.

DRC.cvxQuiet binary 1 1: Suppress CVX output in the command window;
otherwise 0.

DRC.yalDisplay binary 0 1: Show YALMIP display; otherwise 0.

General Tips

• The value of DRC.epsilon greatly affects the accuracy and feasibility of the optimization program:
decreasing the value of ϵ creates tighter constraints but may result in there being no solution(s).

• The selection of DRC.epsilon is highly influenced by the scale of the data. When data are normalized,
a smaller DRC.epsilon value is typically more appropriate compared to when using data in its
original scale. Furthermore, employing a very small DRC.epsilon with data on its original scale can
often lead to linear models that exhibit significantly large errors.

CHAPTER 4. MODEL FITTING AND TESTING 107

• The functions in this class require a prior installation of the CVX optimization toolbox and the
desired solvers (e.g., Gurobi, Mosek) to be used.

• The design of these methods adopt the common idea: train a linear power flow model around a
designated operating point (y⋆,x⋆). Hence, the resulting model is most accurate when the test data
set has an operating state close to (y⋆,x⋆).

• In the event that a program is interrupted while CVX is midway through solving, input cvx_begin
and cvx_end into the MATLAB command window to shut down the CVX process. This will prevent
future errors in calling the CVX solver.

>> cvx_begin;

>> cvx_end;

More About

The distributionally robust chance-constrained programs are formulated as

min
β

∥y⋆⊤ − x⋆⊤β∥22

s.t. inf
P(X)∈D

P
{
r̃j

(
Yj ,X ,βj

)
≤ ϵ

}
≥ ζDRC ∀j

where r(·) is a general description of a residual, and y⋆ ∈ RNy×1 and x⋆ ∈ RNx×1 are two given realizations
of y and x that together represent a typical operating point. X and Yj are random variables referring
to a row in X and the j-th variable in a row in Y respectively, while ϵ ∈ R and ζDRC ∈ R are two preset
thresholds.

Since it is often difficult to accurately assume a prior probability distribution for random variables, an
ambiguity set D is utilized to describe multiple possible selections of P(X), yielding the distributionally
robust chance constraint shown above. In this constraint, r̃j(·) is defined as a linear approximation of
the original residuals r (y⋆,x⋆,β) = ∥y⋆⊤ − x⋆⊤β∥22, and is formulated as

r̃j
(
Yj ,X ,βj

)
= ∥Yj −X⊤βj∥1, ∀j

To solve the DRCC problem, the distributionally robust chance constraints are reformulated. If the
ambiguity set D is moment-based, the constraints can be equivalently transformed into semi-definite
constraints via the conic dual transformation, as done in DRC_XM and DRC_XYM. Alternatively, if D is
ϕ-divergence-based, the distributionally robust chance constraints can be mapped to traditional single-
chance constraints, yielding DRC_XYD.

CHAPTER 4. MODEL FITTING AND TESTING 108

4.7.1 Moment-based Distributionally Robust Chance-constrained Program-

ming with X as Random Variable (DRC_XM)

Additional inputs

Table 4.34: Table of parameters specific to moment-based distributionally robust chance-constrained
programming with X as random variable.

Parameter Format Default Description

DRC.gamma1 float 0 γ1, a SDP parameter reflecting the decision maker’s
risk preference. Default value taken from [66].

DRC.gamma2 float 1 γ2, a SDP parameter reflecting the decision maker’s
risk preference. Default value taken from [66].

DRC.solverM character ’SeDuMi’ Solver options: ’SDPT3’, ’SeDuMi’ (’SDPT3’ and
’SeDuMi’ are included in Daline via CVX).

Tips

• γ1 and γ2 can be chosen based on the size of the training data set, respective confidence levels of µ0

and Σ0, and risk preference. Larger values of γ1 and γ2 generally result in more robust (conservative)
solutions.

• DRC_XM has very long compute times, especially when DRC.programType is set to ’whole’, and may
cause MATLAB to hang. Use of DRC_XYM or, better, DRC_XYD is recommended instead.

• It is recommended to use ’cvx’ as the language and ’SeDuMi’ as the solver.

Examples

>> data = daline.normalize(data);

>> model = daline.fit(data, 'method.name', 'DRC_XM');

>> data = daline.normalize(data);

>> model = daline.fit(dataN, 'method.name', 'DRC_XM', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF'}, 'DRC.epsilon', 1e-3, 'DRC.language' , 'cvx', 'DRC.
solverM', 'SeDuMi', 'DRC.programType', 'indivi');

>> data = daline.normalize(data);

>> opt = daline.setopt('method.name', 'DRC_XM', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'}, 'DRC.epsilon', 1e-3, 'DRC.language', 'cvx', 'DRC.solverM
', 'SeDuMi');

>> model = daline.fit(dataN, opt);

CHAPTER 4. MODEL FITTING AND TESTING 109

>> data = daline.normalize(data);

>> model = func_algorithm_DRC_XM(dataN, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'}, 'DRC.epsilon', 1e-3, 'DRC.language', 'cvx', 'DRC.solverM', 'SeDuMi
');

>> data = daline.normalize(data);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'}, '
DRC.epsilon', 1e-3, 'DRC.language', 'cvx', 'DRC.solverM', 'SeDuMi');

>> model = func_algorithm_DRC_XM(dataN, opt);

More About

In this method, the ambiguity set D is constructed as a moment-based ambiguity set using the mean

vector µ0 = 1
Ns

∑Ns
i=1X i and covariance matrix Σ0 = 1

Ns

Ns∑
i=1

(X i − µ0)(X i − µ0) The distributionally

robust chance constraints

inf
P(X)∈Dj

P
{
∥Yj −X⊤βj∥1 ≤ ϵ

}
≥ ζDRC , ∀j

are then each reformulated into

γ2Σ0 ·Gj + 1− rj +Σ0 ·Hj + γ1qj ≤ ζDRCλj ,
Gi −pj

−p⊤j 1− rj

 ≥


0 −1

2βj

−1
2β

⊤
j λj − β⊤

j µ0 − ϵ+ y⋆

 ,


Gi −pj

−p⊤j 1− rj

 ≥


0 1

2βj

1
2β

⊤
j λj + β

⊤
j µ0 − ϵ− y⋆

 ,


Gi −pj

−p⊤j 1− rj

 ≥ 0,


H i pj

p⊤j qj

 ≥ 0, λj ≥ 0

where the operation A ·B denotes the trace of AB; Gj , Hj , rj , pj , and qj are dual variables of the dual
problem; and λj is a non-negative decision variable that enables the constraints to be finite SDP instead
of semi-infinite. The two sets of SDP constraints represented by the second and third inequalities arise
from that P

(
Yj −X⊤βj ≤ ϵ

)
and P

(
Yj −X⊤βj ≥ −ϵ

)
must be satisfied simultaneously. For detailed

derivations, refer to [67]. γ1, γ2, β, ϵ, ζ
DRC are as described in the “More About” subsection for this

class of functions.

CHAPTER 4. MODEL FITTING AND TESTING 110

In the default case where DRC.programType is set to ’indivi’, the optimization program is solved
Ny times, once for each Yj , and the resulting β̂ from each solution are concatenated column-wise. If
DRC.programType is instead set to ’whole’, the program is run once using Y and β in the distributionally
robust chance constraints.

References

Yitong Liu, Zhengshuo Li, and Junbo Zhao. “Robust Data-Driven Linear Power Flow Model With
Probability Constrained Worst-Case Errors”. In: IEEE Transactions on Power Systems 37.5 (2022),
pp. 4113–4116. doi: 10.1109/TPWRS.2022.3189543

Yiling Zhang, Siqian Shen, and Johanna L Mathieu. “Distributionally robust chance-constrained optimal
power flow with uncertain renewables and uncertain reserves provided by loads”. In: IEEE Transactions
on Power Systems 32.2 (2016), pp. 1378–1388

4.7.2 Moment-based Distributionally Robust Chance-constrained Program-

ming with X and Y as Random Variables (DRC_XYM)

Additional inputs

Refer to the additional parameters listed in Table 4.34.

Tips

• See the tips in Section 4.7.1.

Examples

>> data = daline.normalize(data);

>> model = daline.fit(data, 'method.name', 'DRC_XYM');

>> data = daline.normalize(data);

>> model = daline.fit(dataN, 'method.name', 'DRC_XYM', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF'}, 'DRC.probThreshold', 90, 'DRC.gamma2', 0.5, 'DRC.
language', 'cvx', 'DRC.solverM', 'SeDuMi', 'DRC.programType', 'whole');

>> data = daline.normalize(data);

>> opt = daline.setopt('method.name', 'DRC_XYM', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'}, 'DRC.probThreshold', 90, 'DRC.gamma2', 0.5);

>> model = daline.fit(dataN, opt);

>> data = daline.normalize(data);

>> model = func_algorithm_DRC_XYM(dataN, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'}, 'DRC.probThreshold', 90, 'DRC.gamma2', 0.5);

https://doi.org/10.1109/TPWRS.2022.3189543

CHAPTER 4. MODEL FITTING AND TESTING 111

>> data = daline.normalize(data);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'}, '
DRC.probThreshold', 90, 'DRC.gamma2', 0.5);

>> model = func_algorithm_DRC_XYM(dataN, opt);

More About

The model presented in func_algorithm_DRC_XM treats only X as a stochastic parameter, and thus
calculates P(X) but not P(Yj). In contrast, the method here builds upon the joint probability distribution,
P(X ,Yj) for all j.

For each ambiguity setDj constructed, define X̃ j as X̃ j =

[
Yj X

]
, such that µj =

1
Ns+1

∑Ns+1
i=1 X̃ j,i

and covariance matrix Σj =
1

Ns+1

Ns+1∑
i=1

(X̃ j,i − µj)(X̃ j,i − µj).

The distributionally robust chance constraints

inf
P(X)∈D

P
{
∥Yj −X⊤βj∥1 ≤ ϵ

}
≥ ζDRC , ∀j

are then each reformulated into

γ2Σj ·Gj + 1− rj +Σj ·Hj + γ1qj ≤ ζDRCλj ,
Gi −pj

−p⊤j 1− rj

 ≥


0 −1

2β
′
j

−1
2β

′⊤
j λj − β′⊤

j µj − ϵ

 ,


Gi −pj

−p⊤j 1− rj

 ≥


0 1

2β
′′
j

1
2β

′′⊤
j λj + β

′′⊤
j µj − ϵ

 ,


Gi −pj

−p⊤j 1− rj

 ≥ 0,


H i pj

p⊤j qj

 ≥ 0, λj ≥ 0

where the operation A ·B denotes the trace of AB; Gj , Hj , rj , pj , and qj are dual variables of the dual

problem; λj is a non-negative decision variable; β′
j =

[
−1 β⊤

j

]⊤

and β′′
j =

[
1 β⊤

j

]⊤

. Finally, γ1, γ2,

β, ϵ, ζDRC are as described in the “More About” subsection for this class of functions.

In the default case where DRC.programType is set to ’indivi’, the optimization program is solved

CHAPTER 4. MODEL FITTING AND TESTING 112

Ny times, once for each Yj , and the resulting β̂ from each solution are concatenated column-wise. If
DRC.programType is instead set to ’whole’, the program is run once using Y and β in the distributionally
robust chance constraints.

References

Yitong Liu, Zhengshuo Li, and Junbo Zhao. “Robust Data-Driven Linear Power Flow Model With
Probability Constrained Worst-Case Errors”. In: IEEE Transactions on Power Systems 37.5 (2022),
pp. 4113–4116. doi: 10.1109/TPWRS.2022.3189543

Yiling Zhang, Siqian Shen, and Johanna L Mathieu. “Distributionally robust chance-constrained optimal
power flow with uncertain renewables and uncertain reserves provided by loads”. In: IEEE Transactions
on Power Systems 32.2 (2016), pp. 1378–1388

4.7.3 Divergence-based Distributionally Robust Chance-Constrained Program-

ming with X and Y as Random Variables (DRC_XYD)

Additional inputs

Table 4.35: Table of parameters specific to divergence-based distributionally robust chance-constrained
programming with X and Y as random variables.

Parameter Format Default Description

DRC.d float 0.1 Tolerance, d, of the distance between the particular
density function and the reference one. Default
value taken from Liu, Li, and Zhao [68].

DRC.infMethod character ’fzero’ Choose between ’fzero’ or ’bisec’. These refer to the
methods (MATLAB’s built-in fzero function and
bisection search) of finding the infimum of h(x) for
ambiguity sets that use KL divergence.

DRC.delta float 1e-10 A very small value, δ, to form an exclusive in-
terval [δ, 1 − δ] within (0, 1). Relevant only if
DRC.infMethod is set to ’fzero’.

DRC.bisecTol float 1e-9 Tolerance of error for the bisection search; should
be very small. Relevant only if DRC.infMethod is
set to ’bisec’.

DRC.bigM float 1e6 Value for the big M .

DRC.solverD character ’Gurobi’ Solver option. Only ’Gurobi’ is suggested here (for
’Gurobi’, you need to install it manually).

Tips

• The results returned by DRC_XYD are usually identical whether using fzero or the bisection search
to find the infimum of h(x). However, if either method fails, it is worthwhile to try using the other.

• The ’whole’ option is currently not available as a working argument to DRC.programType.

https://doi.org/10.1109/TPWRS.2022.3189543

CHAPTER 4. MODEL FITTING AND TESTING 113

• With DRC_XYD, using YALMIP is often faster than using CVX.

• It is recommended to use ’Gurobi’ as the solver. Note that ’Gurobi’ is an external, commercial
solver that requires additional, separate installation procedure (this is one of the only two cases
where ’Gurobi’ is recommended in Daline; see Section 2.2 for more details about the installation
of ’Gurobi’)

• Although computationally faster than DRC_XM and DRC_XYM, the solution time of DRC_XYD is generally
still significantly longer than those of other regression-based DPFL approaches.

Examples

>> data = daline.normalize(data);

>> model = daline.fit(data, 'method.name', 'DRC_XYD');

>> data = daline.normalize(data);

>> model = daline.fit(dataN, 'method.name', 'DRC_XYD', 'variable.predictor', {'P', 'Q'},
'variable.response', {'PF'}, 'DRC.infMethod', 'bisec', 'DRC.bisecTol', 1e-8, 'DRC.
language', 'yalmip', 'DRC.solverD', 'Gurobi', 'DRC.programType', 'indivi');

>> data = daline.normalize(data);

>> opt = daline.setopt('method.name', 'DRC_XYD', 'variable.predictor', {'P', 'Q'}, '
variable.response', {'PF'}, 'DRC.infMethod', 'bisec', 'DRC.bisecTol' , 1e-8);

>> model = daline.fit(dataN, opt);

>> data = daline.normalize(data);

>> model = func_algorithm_DRC_XYD(dataN, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'}, 'DRC.infMethod', 'bisec', 'DRC.bisecTol', 1e-8);

>> data = daline.normalize(data);

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'}, '
DRC.infMethod', 'bisec', 'DRC.bisecTol', 1e-8);

>> model = func_algorithm_DRC_XYD(dataN, opt);

More About

In this method, the ambiguity set D is built around a reference distribution for X ; it is assumed that the
true density function is near this reference. ϕ-divergence, Dϕ(f∥f0), is then used to describe the distance
between a particular probability density function f and the reference’s probability density function f0.

As discussed in Theorem C.1 of [69], the distributionally robust chance constraint

inf
P(X)∈{Dϕ(f∥f0)≤d}

P
{
r̃j

(
Yj ,X ,βj

)
≤ ϵ

}
≥ ζDRC = 1− α

CHAPTER 4. MODEL FITTING AND TESTING 114

where d is the tolerance of the distance between the particular and the reference density functions, and
α is the maximum allowed probability of constraint violation, is equivalent to the chance constraint

P0

{
r̃j

(
Yj ,X ,βj

)
≤ ϵ

}
≥ 1− α′

+

where P0 indicates probability evaluated at the reference distribution and α′
+ = max{α′, 0}. DRC_XYD

uses Kullback-Leibler (KL) divergence as its ϕ-divergence, such that

α′ = 1− inf
x∈(0,1)

{
e−dx1−α − 1

x− 1

}
︸ ︷︷ ︸

h(x)

For x ∈ (0, 1), it can be shown that the convex function h(x) has an infimum that is attainable.
func_algorithm_DRC_XYD calculates this infimum by finding the root of δh

δx , either with MATLAB’s
fsolve function or via the bisection method. With the former, DRC.delta can be adjusted to determine
the interval [δ, 1−δ] within which fsolve will search for a root. With the latter, DRC.bisecTol determines
the maximum interval size before the bisection search stops; i.e., it is the error tolerance for the bisection
search.

Instead of ascertaining a suitable reference distribution, the chance constraints can be further trans-
formed into deterministic ones using the big-M approach, as performed in [26]. For each response in Y ,
the final optimization program is thus formulated as

min
βj ,zj

∥y⋆j − x⋆⊤βj∥22

s.t. Y ij −X iβj ≤ ϵzij +M(1− zij) ∀ i

−Y ij +X iβj ≤ ϵzij +M(1− zij) ∀ i
Ns∑
i=1

zij ≥ Ns(1− α)

References

Yitong Liu, Zhengshuo Li, and Junbo Zhao. “Robust Data-Driven Linear Power Flow Model With
Probability Constrained Worst-Case Errors”. In: IEEE Transactions on Power Systems 37.5 (2022),
pp. 4113–4116. doi: 10.1109/TPWRS.2022.3189543

Wei Wei. “Tutorials on Advanced Optimization Methods”. In: arXiv preprint arXiv:2007.13545 (2020)

Zhentong Shao et al. “A linear AC unit commitment formulation: An application of data-driven linear
power flow model”. In: International Journal of Electrical Power & Energy Systems 145 (2023), p. 108673

https://doi.org/10.1109/TPWRS.2022.3189543

CHAPTER 4. MODEL FITTING AND TESTING 115

4.8 Physical-model-informed Family

This class of functions covers the following algorithms:

• DCPF (DC)

• DCPF with ordinary least squares (DC_LS)

• Original DLPF (DLPF)

• DLPF with a data-driven correction (DLPF_C)

• DC-based PTDF to compute branch flow (PTDF)

• First-order Taylor approximation (TAY)

These functions share the common parameter listed in Table 4.36.

Table 4.36: Table of common parameters to all the physical-model-informed linearization methods.

Parameter Format Default Description

opt.idx function/struct func define idx A struct (or function calling a struct) that contains
the column indices of the from- and to-buses in a
MATPOWER-like mpc.branch matrix. By default,
it uses the built-in index in MATPOWER.

4.8.1 DCPF (DC)

Tips

• DCPF assumes that voltage magnitude Vm is 1 p.u. at all buses, branch resistances are negligible,
and voltage angle differences between buses i and j are small enough that sin(θi − θj) ≈ θi − θj for
all buses i and j.

• This method fixes the predictor as P and the response as Va in variable.predictor and vari-

able.response respectively. Changing the inputs to these function arguments will have no effect
on the output. The remaining predictions are derived from the assumptions of DCPF listed above.
Consequently, the branch flows PF = −PT, and QF = QT = 0.

• The input data to DC must be unnormalized.

Examples

>> model = daline.fit(data, 'method.name', 'DC');

>> model = func_algorithm_DC(data);

References

Ray D Zimmerman and Carlos E Murillo-Sánchez. “Matpower 6.0 user’s manual”. In: Power Systems
Engineering Research Center 9 (2016)

CHAPTER 4. MODEL FITTING AND TESTING 116

4.8.2 DCPF with Ordinary Least Squares (DC_LS)

Tips

• DC_LS assumes that voltage magnitude Vm is 1 p.u. at all buses, branch resistances are negligible,
and voltage angle differences between buses i and j are small enough that sin(θi − θj) ≈ θi − θj for
all buses i and j.

• This method fixes the predictor as P and the response as Va in variable.predictor and vari-

able.response respectively. Changing the inputs to these function arguments will have no effect
on the output. The remaining predictions are derived from the assumptions, identical to those of
DCPF, listed above. Consequently, the branch flows PF = −PT, and QF = QT = 0.

• The input data to DC_LS must be unnormalized.

Examples

>> model = daline.fit(data, 'method.name', 'DC_LS');

>> model = func_algorithm_DC_LS(data);

More About

This method uses the ordinary least squares approach (as in Section 4.2.1) to get the solution

β̂ =
(
X̃

⊤
X̃

)−1
X̃

⊤
Y

where X̃ = XB−1. X comprises the real power of PV and P buses, while B refers to the susceptance
matrix of PV and PQ buses. Accordingly, predictions are made as

Y pred =XtestB
−1β̂

References

Xingpeng Li and Kory Hedman. “Data driven linearized ac power flow model with regression analysis”.
In: arXiv preprint arXiv:1811.09727 (2018)

4.8.3 Decoupled Linearized Power Flow (DLPF)

Tips

• This method computes β to map the known values of P, Q, Vm, and Va to the unknown values of Vm and
Va, together with PF and PT. Changing the inputs to the function arguments of variable.predictor
and variable.response will therefore have no effect on the output. Technically, QF and QT can be
predicted as well, but this is not done in the current version of DLPF.

• The input data to DLPF must be unnormalized.

CHAPTER 4. MODEL FITTING AND TESTING 117

• The absolute values of predicted voltage angles are significantly different from those of ACPF when
the slack bus angle is non-zero. However, the predicted voltage magnitudes and active power
line flows exhibit much high accuracy, suggesting that the prediction of angle differences is more
important than the prediction of the absolute values of angles. Thus, the error of Va and its analysis
can be ignored with this method.

Examples

>> model = daline.fit(data, 'method.name', 'DLPF');

>> model = func_algorithm_DLPF(data);

References

Jingwei Yang et al. “A state-independent linear power flow model with accurate estimation of voltage
magnitude”. In: IEEE Transactions on Power Systems 32.5 (2016), pp. 3607–3617

4.8.4 DLPF with a Data-driven Correction (DLPF_C)

Tips

• This method computes β to map the known values of P, Q, Vm, and Va to the unknown values of Vm and
Va, together with PF and PT. Changing the inputs to the function arguments of variable.predictor
and variable.response will therefore have no effect on the output. Technically, QF and QT can be
predicted as well, but this is not done in the current version of DLPF_C.

• The input data to DLPF_C must be unnormalized.

• The absolute values of predicted voltage angles are significantly different from those of ACPF when
the slack bus angle is non-zero. However, the predicted voltage magnitudes and active power line
flows exhibit much higher accuracy, suggesting that the prediction of angle differences is more
important than the prediction of the absolute values of angles. Thus, the error of Va and its analysis
can be ignored with this method.

Examples

>> model = daline.fit(data, 'method.name', 'DLPF_C');

>> model = func_algorithm_DLPF_C(data);

More About

This method takes the coefficients βDLPF from Section 4.8.3 and corrects the results. The residuals of
DLPF from the training data set are first calculated as

∆Y = Y −XβDLPF

CHAPTER 4. MODEL FITTING AND TESTING 118

∆Y is subsequently used in QR decomposition with X (as in Section 4.9.1) to get ∆β. The corrected
coefficients for the linear model are then

β̂ = βDLPF +∆β

References

Mengshuo Jia et al. “Frequency-Control-Aware Probabilistic Load Flow: An Analytical Method”. In:
IEEE Transactions on Power Systems 38.6 (2023), pp. 5170–5187

4.8.5 Power Transfer Distribution Factor (PTDF)

Tips

• This method takes the classic DC-based PTDL approach, using MATPOWER’s makePTDFP func-
tion. Thus, it fixes the predictor as P and the response as PF in variable.predictor and vari-

able.response respectively. Changing the inputs to these function arguments will have no effect
on the output.

• The results of PTDF should be identical to the active power branch flows of DC.

Examples

>> model = daline.fit(data, 'method.name', 'PTDF');

>> model = func_algorithm_PTDF(data);

References

Ray D Zimmerman and Carlos E Murillo-Sánchez. “Matpower 6.0 user’s manual”. In: Power Systems
Engineering Research Center 9 (2016)

CHAPTER 4. MODEL FITTING AND TESTING 119

4.8.6 First-order Taylor Approximation (TAY)

Additional inputs

Table 4.37: Table of parameters specific to first-order Taylor approximation.

Parameter Format Default Description

TAY.point0 character/integer ’end’ Index of the expansion point in the training dataset;
should be less than or equal to num.trainSample,
e.g., TAY.point0 = 200 when num.trainSample is
300. If its argument is ’end’, the method uses the
last sample in the training dataset as the operating
point. When the data are time series data, using
the last sample as the expansion point indicates
that this method is a warm-start Taylor approxi-
mation.

Tips

• This method fixes the predictors as P, Q and the responses as Vm, Va in variable.predictor and
variable.response respectively. Changing the inputs to these function arguments will have no
effect on the output.

Examples

>> model = daline.fit(data, 'method.name', 'TAY');

>> model = daline.fit(data, 'method.name', 'TAY', 'TAY.point0', 1);

>> opt = daline.setopt('method.name', 'TAY', 'TAY.point0', 1);

>> model = daline.fit(data, opt);

>> model = func_algorithm_TAY(data, 'TAY.point0', 1);

>> opt = daline.setopt('TAY.point0', 1);

>> model = func_algorithm_TAY(data, opt);

More About

This method relies on computation of the Jacobian matrix

J =
dx

dy

CHAPTER 4. MODEL FITTING AND TESTING 120

where x refers to the active and reactive power injections, and y to voltage magnitudes and angles, of a
single observation. At around operating point 0,

J0 =
dx

dy

∣∣∣∣
0

≈ x− x0

y − y0

A first-order Taylor approximation around y can therefore be derived as

y ≈ y0 + J−1
0 x− J−1

0 x0

which can also be represented as

y⊤ =

[
1 x⊤

]
y⊤0 − x⊤

0 J
−1⊤
0

J−1⊤
0


for each data point x.

Thus,

β̂ =


y⊤0 − x⊤

0 J
−1⊤
0

J−1⊤
0



References

Xingpeng Li and Kory Hedman. “Data driven linearized ac power flow model with regression analysis”.
In: arXiv preprint arXiv:1811.09727 (2018)

CHAPTER 4. MODEL FITTING AND TESTING 121

4.9 Direct Solution Family

This class of functions covers the following algorithms:

• Direct QR decomposition (QR)

• Direct left division (LD)

• Direct generalized inverse (PIN)

• Direct singular value decomposition (SVD)

• Direct complete orthogonal decomposition (COD)

• Direct principal component analysis (PCA)

4.9.1 Direct QR Decomposition (QR)

Examples

>> model = daline.fit(data, 'method.name', 'QR');

>> model = daline.fit(data, 'method.name', 'QR', 'variable.predictor', {'P'}, 'variable
.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'QR', 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_QR(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_QR(data, opt);

More About

This method factorizes the predictor matrix X ∈ RNs×Nx using the QR decomposition X = QR, where
Q is an Ns-by-Ns orthogonal matrix and R is an Ns-by-Nx upper-triangular matrix.

Subsequently, back-substitution is used in

Rβ̂ = Q⊤Y

to find β̂.

CHAPTER 4. MODEL FITTING AND TESTING 122

4.9.2 Direct Left Division (LD)

Examples

>> model = daline.fit(data, 'method.name', 'LD');

>> model = daline.fit(data, 'method.name', 'LD', 'variable.predictor', {'P'}, 'variable
.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'LD', 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_LD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_LD(data, opt);

More About

The \ operator in MATLAB represents matrix left division, such that X = A\B solves the system of linear
equations A*X = B for X. In this method, \ is used to compute β in

β̂ =X−1Y

4.9.3 Direct Generalized Inverse (PIN)

Tips

• The β̂ found by PIN and LS_PIN generally do not match.

• Preliminary empirical testing suggests that PIN generally achieves a smaller mean relative error
compared to LS_PIN.

Examples

>> model = daline.fit(data, 'method.name', 'PIN');

>> model = daline.fit(data, 'method.name', 'PIN', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

CHAPTER 4. MODEL FITTING AND TESTING 123

>> opt = daline.setopt('method.name', 'PIN', 'variable.predictor', {'P', 'Q'}, 'variable
.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_PIN(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_PIN(data, opt);

More About

The generalized inverse (a.k.a. the Moore-Penrose pseudoinverse) is used in this method to find the
minimum L2 norm solution to a system of linear equations with infinite solutions. Specifically, the
generalized inverse is implemented in

β̂ =X−1Y

4.9.4 Direct Singular Value Decomposition (SVD)

Tips

• The β̂ found by SVD and LS_SVD generally do not match. SVD tends to return a sparser set of β̂
(i.e., more linear coefficients are set to zero).

• Preliminary empirical testing suggests that SVD generally achieves a smaller mean relative error
compared to LS_SVD. However, the difference narrows with larger bus systems and data set sizes.

Examples

>> model = daline.fit(data, 'method.name', 'SVD');

>> model = daline.fit(data, 'method.name', 'SVD', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'SVD', 'variable.predictor', {'P', 'Q'}, 'variable
.response', {'PF'});

>> model = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 124

>> model = func_algorithm_SVD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_SVD(data, opt);

More About

This method factorizes the predictor matrix X ∈ RNs×Nx using the SVD X = UΣV ⊤, where U is an
Ns-by-Ns orthogonal matrix, Σ is an Ns-by-Nx matrix with singular values on its diagonal, and V ⊤ is
an Nx-by-Nx orthogonal matrix. Its pseudoinverse is then implemented to find β̂ in

β̂ =X−1Y = (UΣV ⊤)−1Y

4.9.5 Direct Complete Orthogonal Decomposition (COD)

Tips

• The β̂ found by COD and LS_COD generally do not match. COD tends to return a sparser set of β̂
(i.e., more linear coefficients are set to zero).

• Preliminary empirical testing suggests that COD generally achieves a smaller mean relative error
compared to LS_COD. However, the difference narrows with larger bus systems and data set sizes.

Examples

>> model = daline.fit(data, 'method.name', 'COD');

>> model = daline.fit(data, 'method.name', 'COD', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'});

>> opt = daline.setopt('method.name', 'COD', 'variable.predictor', {'P', 'Q'}, 'variable
.response', {'PF'});

>> model = daline.fit(data, opt);

>> model = func_algorithm_COD(data, 'variable.predictor', {'P', 'Q'}, 'variable.
response', {'PF', 'QF'});

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF'});
>> model = func_algorithm_COD(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 125

More About

This method factorizes the predictor matrix X ∈ RNs×Nx using complete orthogonal decomposition to
get

X = Q̃


R̃ 0

0 0

Z⊤

where Q̃ ∈ RNs×Ns and Z ∈ RNs×Ns are both orthogonal matrices, and R̃ ∈ RNsr×Nsr is an upper-
triangular matrix. Its pseudoinverse is then implemented to find β̂ in

β̂ =X−1Y = Z


R̃

−1
0

0 0

 Q̃⊤
Y

4.9.6 Direct Principal Component Analysis (PCA)

Additional inputs

Refer to Table 4.5 for additional inputs of this method.

Tips

• The β̂ found by PCA and LS_PCA generally do not match.

• Preliminary empirical testing suggests that PCA and LS_PCA generally achieve comparable relative
errors.

• See also the tips in Section 4.2.5.

Examples

>> model = daline.fit(data, 'method.name', 'PCA');

>> model = daline.fit(data, 'method.name', 'PCA', 'variable.predictor', {'P'}, '
variable.response', {'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5)

;

>> opt = daline.setopt('method.name', 'PCA', 'variable.predictor', {'P'}, 'variable.
response', {'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> model = daline.fit(data, opt);

CHAPTER 4. MODEL FITTING AND TESTING 126

>> model = func_algorithm_PCA(data, 'variable.predictor', {'P'}, 'variable.response',
{'PF', 'Vm'}, 'PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> opt = daline.setopt('variable.predictor', {'P'}, 'variable.response', {'PF', 'Vm'}, '
PCA.PerComponent', [30:10:90], 'PCA.numFold', 5);

>> model = func_algorithm_PCA(data, opt);

More About

The underlying idea behind this method is to project the predictor matrix X onto a new orthonormal
basis; i.e., convert the features in the data into uncorrelated features (“principal components”) before
training. The covariance of X undergoes eigendecomposition as

Cov(X) =DΛD⊤

where D ∈ RNx×Nx consists of the eigenvectors of Cov(X), and Λ is a diagonal matrix of the correspond-

ing eigenvalues. The system of linear equations Y =XDβ̂
PCA

is directly solved via

β̂
PCA

= (XD)−1Y (4.6)

such that the linear coefficients of the original predictor data are given as

β̂ =Dβ̂
PCA

Chapter 5

Performance Evaluation and Visualization

Daline supports multiple visualization modules that can generate different graphical outputs. These
outputs focus on linearization accuracy and computational efficiency. Specifically, the package includes:
daline.rank (daline.plot) and daline.time. Specifically,

• daline.rank executes and ranks built-in linearization methods in terms of their accuracy, offering
various visualization options for comprehensive comparisons using different types, themes, styles,
and patterns. Once the execution of methods is completed and the linearization results are acquired,
daline.plot can substitute daline.rank for visualization purposes.

• daline.time executes and compares built-in linearization methods in terms of their computational
efficiency and scalability. It also offers various visualization options.

5.1 Accuracy

The wrapper daline.rank is primarily designed to execute multiple linearization methods within a given
test system, producing various models as outputs. This wrapper then evaluates and ranks the relative
linearization errors of these methods. The ranking is based on the mean value of the relative errors for
the selected response(s), such as the active branch flow PF. Additionally, daline.rank identifies and
returns the names of the methods that failed to generate a valid linear model (e.g., those with coefficients
containing NaN1). Ultimately, daline.rank plots and ranks the relative error distributions of the selected
response(s) for all the chosen methods, according to user-defined settings for themes, styles, patterns, etc.
daline.rank offers two types of error distributions: the moment-based distribution characterized by the
mean and maximum relative errors (plus the minimum relative error if a certain theme is chosen), and
the probability-based distribution fitted by Gaussian mixture models. Certainly, if only one method is
selected, the outputted model and ranking reflect the results of that single method.

Inputs

First, the two essential inputs for daline.rank are subject to specific format requirements. The data

input must fit the standardized data format defined by Daline, as detailed in Section 3.2.1. If data is
generated by Daline, it can be seamlessly utilized in daline.rank. Furthermore, the list of methods

1Failures can be attributed to various reasons; see our previous work in [3] for a detailed failure analysis over exhaustive
simulations.

127

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 128

should be specified in a cell array format, e.g., methodList = {’LS’; ’LS_SVD’; ’LS_COD’}, where
each entry corresponds to the name of a built-in linearization method.

Additionally, daline.rank accommodates a wide range of parameters due to its support for model
training and testing across multiple methods. All parameters applicable to these methods can be inte-
grated into daline.rank. Users can refer to Chapter 4 for details on all specific parameters related to
the built-in linearization methods.

Last but not least, daline.rank supports numerous options for visualization, as listed below in Table
5.1.

Table 5.1: Table of parameters specific to daline.rank

Parameter Format Default Description

PLOT.switch integer 1 Set to 1 to produce figures; set to 0 otherwise.

PLOT.response list (empty) Specifies the responses to plot, such as {’Vm’,’Va’},
{’PF’, ’QF’}. If no valid responses are found (e.g.,

the error of a response is missing or the error con-

tains ’NaN’), the method is considered a failure. If

PLOT.response is not specified, the errors of all the

responses will be plotted.

PLOT.type character ’moment’ Choose ’probability’ to plot the probability distri-

bution of error; select ’moment’ to plot the moment

distribution (min, max, mean) of error.

PLOT.style character ’dark’ Select ’dark’ to plot the error in a dark environ-

ment or ’light’ for a light environment. Note:

PLOT.style is only valid when PLOT.theme = ’com-

mercial’.

PLOT.theme character ’commercial’ For moment error distribution only: choose ’com-

mercial’ for a Big Tech company theme; select ’aca-

demic’ for a standard academic paper theme.

PLOT.pattern character ’indivi’ For moment error distribution only: choose ’indivi’

to paint the error individually for each response or

’joint’ to combine the errors of all given responses

into one figure.

PLOT.startAlpha float 0.95 For probability error distribution only: the trans-

parency level of the first distribution (the most

accurate one). Here, value 1 refers to no trans-

parency.

Continued on next page

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 129

Table 5.1 – continued from previous page

Parameter Format Default Description

PLOT.endAlpha float 0.4 For probability error distribution only: the trans-

parency level of the last distribution (the most in-

accurate one). Here, value 1 refers to no trans-

parency.

PLOT.disPoints integer 1000 For probability error distribution only: specifies the

number of points used to draw the probability dis-

tribution. The larger the number, the smoother

the distribution.

PLOT.logShift float 1e-6 For probability error distribution only: add a small

constant to the errors to handle the log transforma-

tion for zero error values; this is used for painting

only, and this constant will not be added to the

quantified result.

PLOT.numComponent integer 3 For probability error distribution only: specifies

the number of components in the Gaussian mixture

model used to fit the error probability distribution.

When the number of testing data points is small,

consider using fewer components.

PLOT.norm binary 0 For probability error distribution only: 0 refers to

showing the original distribution; 1 refers to show-

ing the normalized distribution (this is suggested

when the differences among different distributions

are huge and the distributions cannot be visualized

effectively in the same figure).

PLOT.titleHeight float 0.5 The larger the titleHeight, the closer the title is

to the figure.

PLOT.origin integer 15 Sets the origin of the log-scaled x-axis to 1e-15 if

origin is set to 15.

PLOT.caseName character (empty) Specifies a case name to display in the title of the

figure, if provided, e.g., ’IEEE_118_bus_system’;

it remains empty by default.

Continued on next page

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 130

Table 5.1 – continued from previous page

Parameter Format Default Description

PLOT.print integer 0 For ’commercial’ and ’indivi’ styles, set to 1 to

print the figure to a PDF and save it in the cur-

rent folder; set to 0 to not print. The filename of

the PDF will be a combination of PLOT.caseName

and the response drawn. If PLOT.caseName has not

been specified, the filename of the PDF will be“file-

name”, which can be overwritten if the print com-

mand is executed more than once.

Examples

>> data = daline.data('case.name', 'case118', 'data.baseType', 'TimeSeriesRand', 'load.
upperRangeTime', 1.05, 'load.lowerRangeTime', 0.95, 'load.distribution', 'normal',
'voltage.distribution', 'normal', 'voltage.varyIndicator', 0, 'data.parallel', 1,

'data.fixRand', 1);

>> methodList = {'PLS_CLS'; 'RR_KPC'; 'LS_PCA'; 'LS_LIFX'; 'PLS_RECW'; 'DLPF_C'; 'RR_WEI'
; 'RR_VCS'; 'PTDF'; 'DC'; 'DLPF'; 'DC_LS'; 'TAY'};

>> opt = daline.setopt('variable.response', {'PF', 'Vm'}, 'PLOT.switch', 1, 'PLOT.
response', {'PF'}, 'PLOT.type', 'probability', 'PLOT.style', 'light', 'PLS.
clusNumInterval', 8, 'RR.clusNumInterval', 12, 'RR.etaInterval', 1000, 'PCA.
PerComponent', 90, 'PLS.omega', 0.8, 'RR.tauInterval', 0.4, 'RR.lambdaInterval', 1

e-10);

>> models = daline.rank(data, methodList, opt);

% See the output figure below.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 131

Figure 5.1: Probability distributions for relative errors of the given methods w.r.t. active branch flows
in a light style

>> data = daline.data('case.name', 'case9');
>> methodList = {'LS'; 'PLS_SIMRX'; 'LS_COD'; 'LS_LIFX'; 'LS_CLS'; 'RR'; 'RR_KPC'; '

RR_WEI'; 'LS_PIN'; 'LS_PCA'; 'PLS_NIP'; 'PLS_CLS'; 'TAY'; 'DC'; 'PTDF'; 'DLPF'; 'DLPF_C'
; 'DC_LS'};

>> daline.rank(data, methodList, 'variable.response', {'Vm', 'PF'}, 'PLOT.response', {'
Vm', 'PF'});

% See the output figure below. Note that two figures were generated, one for 'Vm'
and one for 'PF'. Below, only the figure for 'Vm' is shown.

% (The data and methodList will be used for the following three examples.)

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 132

Figure 5.2: Moment distributions for relative errors of the given methods w.r.t. voltage magnitudes in a
dark, commercial theme.

>> daline.rank(data, methodList, 'variable.response', {'Vm', 'PF'}, 'variable.liftType
', 'gauss', 'TAY.point0 ', 'end', 'PLOT.response', {'PF'}, 'PLOT.style', 'light');

% Only the parameters of methods 'LS_LIFX' and 'TAY' have been adjusted here, but

users can specify more. See the output figure below.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 133

Figure 5.3: Moment distributions for relative errors of the given methods w.r.t. active branch flows in a
light, commercial theme.

>> [models, failure] = daline.rank(data, methodList, 'PLOT.response', {'Vm', 'PF'}, '
PLOT.theme', 'academic', 'PLOT.pattern', 'joint');

% In the output, 'models' is a struct; each field contains the training and testing

results of each given method.

% In the output, 'failure' indicates which method(s) failed when predicting the

responses in 'PLOT.response'. Note that for the 'joint' pattern, a method is

considered a failure only if this method failed to predict all the responses

given in 'PLOT.response'.
% See the output figure below.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 134

Figure 5.4: Moment distributions for relative errors of the given methods w.r.t. voltage magnitudes in
an academic, joint theme.

>> opt = daline.setopt('variable.response', {'Vm', 'PF'}, 'PLOT.response', {'Vm', 'PF'},
'PLOT.theme', 'academic', 'PLOT.pattern', 'indivi');

>> [models, failure] = daline.rank(data, methodList, opt);

% Like the other wrappers, daline.rank also accepts the structured 'opt' formulated

by daline.setopt.

% In the output, 'models' is a struct; each field contains the training and testing

results of each given method.

% In the output, the 'failure' indicator identifies which method(s) failed when

predicting the responses specified in \texttt{PLOT.response}. For the 'indivi'
pattern, a method is considered to have failed if it fails to predict any of

the responses in \texttt{PLOT.response} at least once. Additionally, 'failure'
also documents which specific responses caused a method to fail.

% See the output figures below.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 135

Figure 5.5: Moment distributions for relative errors of the given methods w.r.t. active branch flows in
an academic, individual theme.

Figure 5.6: Moment distributions for relative errors of the given methods w.r.t. voltage magnitudes in
an academic, individual theme.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 136

% More examples regarding how to adjust the parameters specific to particular

methods when comparing them. Users only need to put the name-value pair

parameters from the third argument of daline.rank. For the parameters of

methods, no mandatory orders or mapping constraints are enforced.

>> data = daline.data('case.name', 'case9');
>> daline.rank(data, {'DLPF_C', 'RR', 'PLS_REC'}, 'RR.lambdaInterval', 1e-5, 'RR.

cvNumFold', 4, 'PLS.recursivePercentage', 40);

% More examples regarding how to adjust the parameters specific to particular

methods when comparing them. Users can also use opt parameter structure, which

can be used as the third argument of daline.rank

>> data = daline.data('case.name', 'case9');
>> opt = daline.setopt('RR.lambdaInterval', 1e-5, 'RR.cvNumFold', 4, 'PLS.

recursivePercentage', 40);

>> daline.rank(data, {'DLPF_C', 'RR', 'PLS_REC'}, opt);

% More examples regarding how to adjust the parameters specific to particular

methods when comparing them. Certainly, different methods can always be

collected into a set, e.g.,

>> data = daline.data('case.name', 'case9');
>> method = {'DLPF_C', 'RR', 'PLS_REC'};
>> opt = daline.setopt('RR.lambdaInterval', 1e-5, 'RR.cvNumFold', 4, 'PLS.

recursivePercentage', 40);

>> daline.rank(data, method, opt);

Tips

• When users need to compare and rank multiple methods, they may wish to adjust numerous param-
eters for these methods. Manually typing the name-value pairs of these parameters and entering
them into daline.rank can be cumbersome and inelegant. Instead, it is advisable for users to
modify the file that holds the default parameters, named func_default_option_category. Af-
ter setting these default parameters to meet their requirements, users can then straightforwardly
call daline.rank(data, method) for comparison and ranking purposes, eliminating the need to
manually input a large number of name-value pairs.

• When users opt to plot probability distributions, be aware that these distributions are fitted using a
Gaussian mixture model via the expectation-maximization method. This approach may encounter
overfitting issues if the number of testing data points is insufficient. To mitigate this, consider
using a larger dataset to generate more error data, reducing the number of Gaussian components
by adjusting PLOT.numComponent, or simply re-running the function.

• If users attempt to plot probability distributions but the resulting figure lacks visible distributions,
this is typically due to significant differences in distribution scales, causing many distributions to
be compressed and invisible. In such cases, users can utilize normalized probability distributions by
setting PLOT.norm to 1.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 137

• In certain situations, users may only need to replot or modify the figures without rerunning the
entire process. However, re-executing daline.rank triggers an unnecessary and time-consuming
retraining and retesting of models across multiple methods. To avoid this, the output models from
daline.rank can be directly used as the primary argument in daline.plot. The options listed in
Table 5.1 apply to daline.plot as well.

• Except for taking the output models from daline.rank, daline.plot can also accept the single
model output from daline.fit. See below for the examples in this regard.

>> data = daline.data('case.name', 'case9');
>> model = daline.fit(data, 'method.name', 'PLS_SIM');
>> daline.plot(model);

% Will generate several figures. Two of them are shown below.

% (Note that the following four examples are also based on 'case9' and the method '
PLS_SIM').

(a) Relative error of voltage magnitude of PLS_SIM under MATPOWER case9 with default settings

(b) Relative error of active branch flow of PLS_SIM under MATPOWER case9 with default settings

Figure 5.7: Demonstration of the dark, commercial theme when plotting the errors individually. Note
the small dark block on the bar represents the mean error, and the right end of the bar is the maximal
error. Also note that the x-axis is at a log scale.

>> daline.plot(model, 'PLOT.response', {'Vm'}, 'PLOT.style', 'light');
% One figure of 'Vm' using the light, commercial theme, as shown below.

Figure 5.8: Demonstration of the light, commercial theme for the error of the voltage magnitude only.
Note the small light block on the bar represents the mean error, and the right end of the bar is the
maximal error. Also note that the x-axis is at a log scale.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 138

>> daline.plot(model, 'PLOT.response', {'Vm', 'PF'}, 'PLOT.theme', 'academic', 'PLOT.
style', 'light', 'PLOT.pattern', 'joint');

% One figure that jointly shows the errors of 'Vm' and 'PF' using the academic theme,

as shown below.

Figure 5.9: Demonstration of the academic, joint theme for the relative errors of voltage magnitude and
active branch flow. The blue bar indicates the error distribution of voltage magnitude: the left end is the
minimum error, the right end is the maximum error, and the bold blue line within the bar is the mean
error. So is the active branch flow.

>> failure = daline.plot(model, 'PLOT.response', {'Vm', 'PF', 'Va'}, 'PLOT.switch', 0);

% Generate no figures, but provide the indicator of failure. The indicator

determines if the method 'PLS_SIM' encounters any failures while employing the

linear model it generated to compute 'Vm', 'PF', or 'Va'. Any failure details are

methodically organized in the output labeled 'failure'. If there are no failures

, this output will remain empty.

>> opt = daline.setopt('PLOT.response', {'Vm', 'PF'}, 'PLOT.theme', 'academic', 'PLOT.
pattern', 'indivi');

>> failure = daline.plot(model, opt);

% Like the other wrappers, daline.plot also accepts the structured 'opt' formulated

by daline.setopt.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 139

5.2 Visualization of Computational Efficiency

For a specific power system case, daline.time can measure and compare the computational times of
various built-in methods in terms of their model training and testing. Additionally, for multiple power
system cases of varying sizes, daline.time can generate computational time evolution curves for these
methods, to show the scalability of these approaches in terms of computational burden. The output of
daline.time, except for the graphical outcomes, is a timeList, recording the computational times of
the given methods.

5.2.1 Computational time rankings of multiple methods (daline.time)

Inputs

When comparing the computational times of various built-in methods for a test case, the required inputs
for daline.time include a data struct and a list of method names. The data input, corresponding to the
test case, must conform to the standardized format defined by Daline, as detailed in Section 3.2.1. If
data is generated by Daline, it can be directly used in daline.time without modification. Additionally,
the list of methods should be specified in a cell array, for example, methodList = {’LS’; ’LS_SVD’;

’LS_COD’}, where each element represents the name of a built-in linearization method.

Additionally, daline.time supports a broad range of method parameters due to its support to
measure the time needed by the model training and testing across multiple methods. All parameters
relevant to these methods can be integrated into daline.time. Users are encouraged to consult Chapter
4 for detailed information on the specific parameters associated with the built-in linearization methods.
Furthermore, daline.time also leverages the parameters listed in Table 5.2 to tailor the visualization of
figures.

Table 5.2: Table of additional parameters specific to daline.time

Parameter Format Default Description

PLOT.switch integer 1 Set to 1 to produce figures; set to 0 otherwise.

PLOT.repeat integer 3 Specifies the number of times to repeat the process
to calculate the average computational time.

PLOT.style character ’dark’ Select ’dark’ to plot the error in a dark environ-
ment or ’light’ for a light environment. Note:
PLOT.style is only valid when PLOT.theme = ’com-

mercial’.

Examples

>> data = daline.data('case.name', 'case39');
>> method = {'LS'; 'PLS_SIMRX'; 'LS_COD'; 'LS_LIFX'; 'LS_CLS'; 'RR'; 'RR_KPC'; 'RR_WEI'; '

LS_PIN'; 'LS_PCA'; 'PLS_NIP'; 'PLS_CLS'; 'TAY'; 'DC'; 'PTDF'; 'DLPF'; 'DLPF_C'; 'DC_LS'
};

>> daline.time(data, method);

% See the output figure below.

% (The data and method list will be used for the following two examples.)

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 140

Figure 5.10: The dark theme for the computational time ranking.

>> timeList = daline.time(data, method, 'PLOT.repeat', 5, 'PLOT.style', 'light');
% The output 'timeList' is a vector; each element is the computational time of a

given method in 'method'. The sequence of 'timeList' is identical to the method

sequence in 'method'.
% See the output figure below.

Figure 5.11: The light theme for the computational time ranking.

>> opt = daline.setopt('PLOT.repeat', 3, 'PLOT.style', 'dark');
>> timeList = daline.time(data, method, opt);

% Like the other wrappers, daline.rank also accepts the structured 'opt' formulated

by daline.setopt.

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 141

% See the output figure below.

Figure 5.12: The dark theme for the computational time ranking.

5.2.2 Computational time evolution curves of multiple methods (daline.time)

Inputs

When generating computational evolution curves for multiple test systems using various built-in methods,
the required inputs for daline.time include a dataList cell and a list of method names. Unlike the
standardized data format defined by Daline, here dataList should be a cell array, where each element
is a data struct corresponding to a different test system and conforms to the standardized format. This
specialized data format can be easily produced by Daline with minimal coding. Additionally, the list of
methods should be defined in a cell array format, such as methodList = {’LS’; ’LS_SVD’; ’LS_COD’},
where each element denotes the name of a built-in linearization method.

Additionally, as explained above, daline.time also supports a broad range of method parameters,
as well as the parameters listed in Table 5.2, to tailor not only the visualization of figures but also the
model training and testing processes.

Examples

>> caseList = {'case9', 'case14', 'case33bw', 'case39'};
>> dataList = cell(length(caseList), 1);

>> for n = 1:length(caseList)

>> dataList{n} = daline.data('case.name', caseList{n});

>> end

>> method = {'LS'; 'PLS_SIMRX'; 'LS_COD'; 'LS_LIFX'; 'LS_CLS'; 'RR'; 'RR_KPC'; 'RR_WEI'; '
LS_PIN'; 'LS_PCA'; 'PLS_NIP'; 'PLS_CLS'; 'TAY'; 'DC'; 'PTDF'; 'DLPF'; 'DLPF_C'; 'DC_LS'
};

CHAPTER 5. PERFORMANCE EVALUATION AND VISUALIZATION 142

>> timeList = daline.time(dataList, method);

% See the output figure below.

% (The datList and method list will be used for the following example.)

Figure 5.13: The dark theme for the computational evolution curves.

>> opt = daline.setopt('variable.predictor', {'P', 'Q'}, 'variable.response', {'PF', 'Vm
'}, 'RR.lambdaInterval', [0:5e-2:0.1], 'PLOT.repeat', 5, 'PLOT.style', 'light');

>> timeList = daline.time(datalist, method, opt);

% See the output figure below.

Figure 5.14: The light theme for the computational evolution curves.

Chapter 6

All-in-one Command for Daline (daline.all)

Minimal coding can greatly enhance the user experience. For certain functionalities — such as data
generation, processing, model training, and testing — Daline provides specialized “all-in-one wrappers”
like daline.data and daline.fit. To further simplify the process, Daline includes an “all-in-one com-
mand” that encompasses most functionalities by bridging daline.data, daline.fit, and daline.plot,
enabling users to execute data generation and processing, model training and testing, as well as result
visualization with one line of code. This command is daline.all.

6.1 Inputs

The primary and mandatory input for daline.all is a power system case of interest. This can either be
a MATPOWER case name, such as ’case118’, or a power system defined in the standard mpc structure.
For further details on the mpc structure, see Section 3.1 in [36].

Furthermore, daline.all supports all parameters specific to daline.generate, daline.noise,
daline.outlier, daline.denoise, daline.deoutlier, daline.normalize, daline.fit, and da-

line.plot. For information on the built-in parameters of daline.fit, refer to Chapter 4; for those of
daline.plot, see Section ??; and for parameters of the remaining wrappers, consult Chapter 3.

6.2 Outputs

daline.all provides three optional outputs: data, model, and failure. data consists of artificial data
generated by Daline and is structured into the standard data format of Daline; for details, see Section
3.2.1. model, a structure, summarizes the outcomes of model training and testing; for more information,
refer to Table 4.3. failure captures any potential failure information during the training and testing
processes, indicating whether the linearization method encountered any issues when using the generated
linear model to compute responses. If no failures occur, failure will remain empty.

Additionally, daline.all also generates figures that summarize the linearization accuracy of the
method from multiple perspectives.

143

CHAPTER 6. ALL-IN-ONE COMMAND FOR DALINE (DALINE.ALL) 144

6.3 Examples

% Example: the minimal input

>> model = daline.all('case118');

% Example: the minimal input

>> mpc = ext2int(loadcase('case118'));
>> model = daline.all('case118');

% Example: data generation

>> model = daline.all('case118', 'num.trainSample', 150, 'num.testSample', 200, 'data.
parallel', 0, 'data.curvePlot', 1);

% Examples: adding outliers

>> model = daline.all('case118', 'num.trainSample', 150, 'num.testSample', 200, '
outlier.switchTrain', 1);

>> model = daline.all('case118', 'num.trainSample', 150, 'num.testSample', 200, '
outlier.switchTrain', 1, 'outlier.switchTest', 1);

% Examples: adding noise

>> model = daline.all('case118', 'noise.switchTrain', 1, 'noise.SNR_dB', 30);

>> model = daline.all('case118', 'noise.switchTest', 1, 'noise.SNR_dB', 30);

% Examples: filtering outliers

>> model = daline.all('case118', 'outlier.switchTrain', 1, 'outlier.percentage', 0.01,

'filOut.switchTrain', 1);

>> model = daline.all('case118', 'outlier.switchTest', 1, 'outlier.percentage', 0.01,

'filOut.switchTest', 1, 'filOut.method', 'median');

% Examples: filtering noise

>> model = daline.all('case118', 'noise.switchTrain', 1, 'noise.SNR_dB', 30, 'filNoi.
switchTrain', 1);

>> model = daline.all('case118', 'noise.switchTrain', 1, 'noise.SNR_dB', 30, 'filNoi.
switchTrain', 1, 'filNoi.est_dB', 31);

CHAPTER 6. ALL-IN-ONE COMMAND FOR DALINE (DALINE.ALL) 145

% Example: normalizing data

>> [model, data] = daline.all('case118', 'norm.switch', 1);

% Examples: method settings

>> [model, data, failure] = daline.all('case118', 'method.name', 'RR');
>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_KPC', 'RR.

lambdaInterval', [0.1:0.01:0.2], 'PLOT.switch', 0);

>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_KPC', 'RR.
clusNumInterval', 10, 'RR.etaInterval', 1000, 'PLOT.switch', 0);

>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_VCS');
>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_VCS', 'RR.

lambdaInterval', [0.1:0.01:0.2]);

% Examples: plot settings

>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_VCS', 'PLOT.
switch', 0);

>> [model, data, failure] = daline.all('case118', 'method.name', 'RR_VCS', 'PLOT.
response', {'Vm', 'PF'}, 'PLOT.theme', 'academic', 'PLOT.pattern', 'indivi');

% Example: use opt as input

>> opt = daline.setopt('method.name', 'RR_VCS', 'PLOT.response', {'Vm', 'PF'}, 'PLOT.
theme', 'academic', 'PLOT.pattern', 'indivi');

>> [model, data, failure] = daline.all('case118', opt);

Bibliography

[1] Mengshuo Jia and Gabriela Hug. “Overview of Data-driven Power Flow Linearization”. In: 2023

IEEE Belgrade PowerTech. 2023, pp. 01–06. doi: 10.1109/PowerTech55446.2023.10202779

(cit. on p. 1).

[2] Mengshuo Jia, Gabriela Hug-Glanzmann, Ning Zhang, Zhaojian Wang, Yi Wang, and Chongqing

Kang. “Data-driven Power Flow Linearization: Theory”. In: ETH Zurich Research Collection

(2024). url: https://www.research-collection.ethz.ch/handle/20.500.11850/679040

(cit. on pp. 1, 33, 37, 39, 55, 63, 65).

[3] Mengshuo Jia, Gabriela Hug, Ning Zhang, Zhaojian Wang, Yi Wang, and Chongqing Kang.

“Data-driven Power Flow Linearization: Simulation”. In: arXiv preprint arXiv:2406.06833 (2024).

url: https://arxiv.org/abs/2406.06833 (cit. on pp. 1, 2, 32, 37, 39, 55, 63, 65, 127).

[4] Mengshuo Jia, Wen Yi Chan, and Gabriela Hug. “Daline: A Data-driven Power Flow Lineariza-

tion Toolbox for Power Systems Research and Education”. In: Under Review (2024) (cit. on

pp. 2, 4).

[5] The BSD 3-Clause License. http://opensource.org/licenses/BSD-3-Clause. Open Source

Initiative (cit. on p. 3).

[6] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas. “MAT-

POWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research

and Education”. In: IEEE Transactions on Power Systems 26.1 (2011), pp. 12–19. doi: 10.1109/

TPWRS.2010.2051168 (cit. on p. 3).

[7] Inc. CVX Research. CVX: Matlab Software for Disciplined Convex Programming, version 2.0.

http://cvxr.com/cvx. Aug. 2012 (cit. on p. 3).

[8] J. Löfberg. “YALMIP : A Toolbox for Modeling and Optimization in MATLAB”. In: In Proceed-

ings of the CACSD Conference. Taipei, Taiwan, 2004 (cit. on p. 3).

[9] Hanchen Xu, Alejandro D Domı́nguez-Garćıa, Venugopal V Veeravalli, and Peter W Sauer.

“Data-driven voltage regulation in radial power distribution systems”. In: IEEE Transactions on

Power Systems 35.3 (2019), pp. 2133–2143 (cit. on pp. 10, 61, 63).

146

https://doi.org/10.1109/PowerTech55446.2023.10202779
https://www.research-collection.ethz.ch/handle/20.500.11850/679040
https://arxiv.org/abs/2406.06833
http://opensource.org/licenses/BSD-3-Clause
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
http://cvxr.com/cvx

BIBLIOGRAPHY 147

[10] Zhentong Shao, Qiaozhu Zhai, Jiang Wu, and Xiaohong Guan. “Data Based Linear Power Flow

Model: Investigation of a Least-Squares Based Approximation”. In: IEEE Transactions on Power

Systems 36.5 (2021), pp. 4246–4258 (cit. on pp. 10, 41, 42).

[11] Shao Zhentong, Zhai Qiaozhu, Wu Jiang, and Guan Xiaohong. “Data Based Linearization: Least-

Squares Based Approximation”. In: arXiv preprint arXiv:2007.02494 (2020) (cit. on p. 10).

[12] Yitong Liu, Zhengshuo Li, and Yu Zhou. “Data-Driven-Aided Linear Three-Phase Power Flow

Model for Distribution Power Systems”. In: IEEE Transactions on Power Systems (2021) (cit. on

p. 10).

[13] Yitong Liu, Zhengshuo Li, and Yu Zhou. “A Physics-based and Data-driven Linear Three-Phase

Power Flow Model for Distribution Power Systems”. In: arXiv preprint arXiv:2103.10147 (2021)

(cit. on p. 10).

[14] Yuxiao Liu, Yi Wang, Ning Zhang, Dan Lu, and Chongqing Kang. “A data-driven approach to

linearize power flow equations considering measurement noise”. In: IEEE Transactions on Smart

Grid 11.3 (2019), pp. 2576–2587 (cit. on pp. 10, 101).

[15] Siobhan Powell, Alyona Ivanova, and David Chassin. “Fast solutions in power system simulation

through coupling with data-driven power flow models for voltage estimation”. In: arXiv preprint

arXiv:2001.01714 (2020) (cit. on p. 10).

[16] Li Guo, Yuxuan Zhang, Xialin Li, Zhongguan Wang, Yixin Liu, Linquan Bai, and Chengshan

Wang. “Data-driven Power Flow Calculation Method: A Lifting Dimension Linear Regression

Approach”. In: IEEE Transactions on Power Systems (2021) (cit. on pp. 10, 58–60).

[17] Milan Korda and Igor Mezić. “Linear predictors for nonlinear dynamical systems: Koopman op-

erator meets model predictive control”. In: Automatica 93 (2018), pp. 149–160 (cit. on pp. 10, 56,

58, 60).

[18] Yitong Liu, Zhengshuo Li, and Shumin Sun. “A Data-Driven Method for Online Constructing

Linear Power Flow Model”. In: IEEE Transactions on Industry Applications (2023) (cit. on

pp. 10, 26).

[19] Yi Tan, Yuanyang Chen, Yong Li, and Yijia Cao. “Linearizing power flow model: A hybrid phys-

ical model-driven and data-driven approach”. In: IEEE Transactions on Power Systems 35.3

(2020), pp. 2475–2478 (cit. on p. 10).

[20] Yuxiao Liu, Ning Zhang, Yi Wang, Jingwei Yang, and Chongqing Kang. “Data-driven power

flow linearization: A regression approach”. In: IEEE Transactions on Smart Grid 10.3 (2018),

pp. 2569–2580 (cit. on pp. 10, 67, 72).

[21] Severin Nowak, Yu Christine Chen, and Liwei Wang. “Measurement-based optimal DER dispatch

with a recursively estimated sensitivity model”. In: IEEE Transactions on Power Systems 35.6

(2020), pp. 4792–4802 (cit. on pp. 10, 75).

[22] Yanbo Chen, Chao Wu, and Junjian Qi. “Data-Driven Power Flow Method Based on Exact Lin-

ear Regression Equations”. In: Journal of Modern Power Systems and Clean Energy (2021) (cit.

on p. 10).

BIBLIOGRAPHY 148

[23] Jiaqi Chen, Wenchuan Wu, and Line A Roald. “Data-driven Piecewise Linearization for Distribu-

tion Three-phase Stochastic Power Flow”. In: IEEE Transactions on Smart Grid (2021) (cit. on

p. 10).

[24] Junbo Zhang, Zejing Wang, Xiangtian Zheng, Lin Guan, and CY Chung. “Locally weighted ridge

regression for power system online sensitivity identification considering data collinearity”. In:

IEEE Transactions on Power Systems 33.2 (2017), pp. 1624–1634 (cit. on p. 10).

[25] Jiaqi Chen, Wenyun Li, Wenchuan Wu, Tao Zhu, Zhenyi Wang, and Chuan Zhao. “Robust Data-

driven Linearization for Distribution Three-phase Power Flow”. In: 2020 IEEE 4th Conference on

Energy Internet and Energy System Integration (EI2). IEEE. 2020, pp. 1527–1532 (cit. on p. 10).

[26] Zhentong Shao, Qiaozhu Zhai, Zhihan Han, and Xiaohong Guan. “A linear AC unit commitment

formulation: An application of data-driven linear power flow model”. In: International Journal of

Electrical Power & Energy Systems 145 (2023), p. 108673 (cit. on pp. 10, 114).

[27] Jiafan Yu, Yang Weng, and Ram Rajagopal. “Robust mapping rule estimation for power flow

analysis in distribution grids”. In: 2017 North American Power Symposium (NAPS). IEEE. 2017,

pp. 1–6 (cit. on p. 10).

[28] Jiafan Yu, Yang Weng, and Ram Rajagopal. “Mapping rule estimation for power flow analysis in

distribution grids”. In: arXiv preprint arXiv:1702.07948 (2017) (cit. on p. 10).

[29] Penghua Li, Wenchuan Wu, Xiaoming Wan, and Bin Xu. “A Data-Driven Linear Optimal Power

Flow Model for Distribution Networks”. In: IEEE Transactions on Power Systems (2022) (cit. on

pp. 10, 94).

[30] Yuxiao Liu, Bolun Xu, Audun Botterud, Ning Zhang, and Chongqing Kang. “Bounding regres-

sion errors in data-driven power grid steady-state models”. In: IEEE Transactions on Power Sys-

tems 36.2 (2020), pp. 1023–1033 (cit. on p. 10).

[31] Yitong Liu, Zhengshuo Li, and Junbo Zhao. “Robust Data-Driven Linear Power Flow Model

With Probability Constrained Worst-Case Errors”. In: IEEE Transactions on Power Systems

37.5 (2022), pp. 4113–4116. doi: 10.1109/TPWRS.2022.3189543 (cit. on pp. 10, 110, 112, 114).

[32] Xingpeng Li. “Fast Heuristic AC Power Flow Analysis with Data-Driven Enhanced Linearized

Model”. In: Energies 13.13 (2020), p. 3308 (cit. on p. 10).

[33] Xingpeng Li and Kory Hedman. “Data driven linearized ac power flow model with regression

analysis”. In: arXiv preprint arXiv:1811.09727 (2018) (cit. on p. 10).

[34] Mengshuo Jia, Qianni Cao, Chen Shen, and Gabriela Hug. “Frequency-Control-Aware Probabilis-

tic Load Flow: An Analytical Method”. In: IEEE Transactions on Power Systems (2022), pp. 1–

16. doi: 10.1109/TPWRS.2022.3223884 (cit. on p. 10).

[35] Jingwei Yang, Ning Zhang, Chongqing Kang, and Qing Xia. “A state-independent linear power

flow model with accurate estimation of voltage magnitude”. In: IEEE Transactions on Power

Systems 32.5 (2016), pp. 3607–3617 (cit. on p. 10).

[36] Ray D Zimmerman and Carlos E Murillo-Sánchez. “Matpower 6.0 user’s manual”. In: Power Sys-

tems Engineering Research Center 9 (2016) (cit. on pp. 17, 22, 143).

https://doi.org/10.1109/TPWRS.2022.3189543
https://doi.org/10.1109/TPWRS.2022.3223884

BIBLIOGRAPHY 149

[37] Michael Brown, Milan Biswal, Sukumar Brahma, Satish J Ranade, and Huiping Cao. “Charac-

terizing and quantifying noise in PMU data”. In: 2016 IEEE Power and Energy Society General

Meeting (PESGM). IEEE. 2016, pp. 1–5 (cit. on p. 23).

[38] Kebina Manandhar, Xiaojun Cao, Fei Hu, and Yao Liu. “Detection of Faults and Attacks Includ-

ing False Data Injection Attack in Smart Grid Using Kalman Filter”. In: IEEE Transactions on

Control of Network Systems 1.4 (2014), pp. 370–379. doi: 10.1109/TCNS.2014.2357531 (cit. on

p. 26).

[39] Li Guo, Yuxuan Zhang, Xialin Li, Zhongguan Wang, Yixin Liu, Linquan Bai, and Chengshan

Wang. “Data-driven Power Flow Calculation Method: A Lifting Dimension Linear Regression

Approach”. In: IEEE Transactions on Power Systems (2021) (cit. on pp. 39, 40, 58).

[40] Yitong Liu, Zhengshuo Li, and Yu Zhou. “Data-Driven-Aided Linear Three-Phase Power Flow

Model for Distribution Power Systems”. In: IEEE Transactions on Power Systems (2021) (cit. on

pp. 46, 49).

[41] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge uni-

versity press, 2004 (cit. on p. 49).

[42] The MathWorks Inc. Feasible generalized least squares. 2023. url: https://mathworks.com/

help/econ/fgls.html#buicqm5-17 (cit. on p. 52).

[43] Carl Mugnier, Konstantina Christakou, Joel Jaton, Michael De Vivo, Mauro Carpita, and Mario

Paolone. “Model-less/measurement-based computation of voltage sensitivities in unbalanced elec-

trical distribution networks”. In: 2016 Power Systems Computation Conference (PSCC). IEEE.

2016, pp. 1–7 (cit. on p. 52).

[44] Yuxiao Liu, Yi Wang, Ning Zhang, Dan Lu, and Chongqing Kang. “A data-driven approach to

linearize power flow equations considering measurement noise”. In: IEEE Transactions on Smart

Grid 11.3 (2019), pp. 2576–2587 (cit. on p. 54).

[45] Yitong Liu, Zhengshuo Li, and Shumin Sun. “A Data-Driven Method for Online Constructing

Linear Power Flow Model”. In: IEEE Transactions on Industry Applications (2023) (cit. on

pp. 64, 66).

[46] Manoj Badoni, Alka Singh, and Bhim Singh. “Variable Forgetting Factor Recursive Least Square

Control Algorithm for DSTATCOM”. In: IEEE Transactions on Power Delivery 30.5 (2015),

pp. 2353–2361. doi: 10.1109/TPWRD.2015.2422139 (cit. on pp. 64, 66).

[47] S Joe Qin. “Partial least squares regression for recursive system identification”. In: Proceedings of

32nd IEEE Conference on Decision and Control. IEEE. 1993, pp. 2617–2622 (cit. on pp. 67, 70).

[48] Aylin Alin. “Comparison of PLS algorithms when number of objects is much larger than number

of variables”. In: Statistical papers 50.4 (2009), pp. 711–720 (cit. on pp. 67, 68).

[49] Yi Tan, Yuanyang Chen, Yong Li, and Yijia Cao. “Linearizing power flow model: A hybrid phys-

ical model-driven and data-driven approach”. In: IEEE Transactions on Power Systems 35.3

(2020), pp. 2475–2478 (cit. on p. 68).

https://doi.org/10.1109/TCNS.2014.2357531
https://mathworks.com/help/econ/fgls.html#buicqm5-17
https://mathworks.com/help/econ/fgls.html#buicqm5-17
https://doi.org/10.1109/TPWRD.2015.2422139

BIBLIOGRAPHY 150

[50] Sijmen De Jong. “SIMPLS: an alternative approach to partial least squares regression”. In:

Chemometrics and intelligent laboratory systems 18.3 (1993), pp. 251–263 (cit. on p. 68).

[51] Herman Wold. “Path models with latent variables: The NIPALS approach”. In: Quantitative soci-

ology. Elsevier, 1975, pp. 307–357 (cit. on p. 70).

[52] Yuxiao Liu, Ning Zhang, Yi Wang, Jingwei Yang, and Chongqing Kang. “Data-driven power

flow linearization: A regression approach”. In: IEEE Transactions on Smart Grid 10.3 (2018),

pp. 2569–2580 (cit. on pp. 71, 73).

[53] S Joe Qin. “Recursive PLS algorithms for adaptive data modeling”. In: Computers & Chemical

Engineering 22.4-5 (1998), pp. 503–514 (cit. on p. 75).

[54] Severin Nowak, Yu Christine Chen, and Liwei Wang. “Measurement-based optimal DER dispatch

with a recursively estimated sensitivity model”. In: IEEE Transactions on Power Systems 35.6

(2020), pp. 4792–4802 (cit. on p. 77).

[55] Yanbo Chen, Chao Wu, and Junjian Qi. “Data-Driven Power Flow Method Based on Exact Lin-

ear Regression Equations”. In: Journal of Modern Power Systems and Clean Energy (2021) (cit.

on pp. 82, 84).

[56] Jiaqi Chen, Wenchuan Wu, and Line A Roald. “Data-driven Piecewise Linearization for Distribu-

tion Three-phase Stochastic Power Flow”. In: IEEE Transactions on Smart Grid (2021) (cit. on

p. 86).

[57] Junbo Zhang, Zejing Wang, Xiangtian Zheng, Lin Guan, and CY Chung. “Locally weighted ridge

regression for power system online sensitivity identification considering data collinearity”. In:

IEEE Transactions on Power Systems 33.2 (2017), pp. 1624–1634 (cit. on p. 87).

[58] Alex J Smola and Bernhard Schölkopf. “A tutorial on support vector regression”. In: Statistics

and computing 14.3 (2004), pp. 199–222 (cit. on pp. 89, 91).

[59] Jiaqi Chen, Wenyun Li, Wenchuan Wu, Tao Zhu, Zhenyi Wang, and Chuan Zhao. “Robust Data-

driven Linearization for Distribution Three-phase Power Flow”. In: 2020 IEEE 4th Conference on

Energy Internet and Energy System Integration (EI2). IEEE. 2020, pp. 1527–1532 (cit. on p. 90).

[60] Jiafan Yu, Yang Weng, and Ram Rajagopal. “Robust mapping rule estimation for power flow

analysis in distribution grids”. In: 2017 North American Power Symposium (NAPS). IEEE. 2017,

pp. 1–6 (cit. on p. 92).

[61] Penghua Li, Wenchuan Wu, Xiaoming Wang, and Bin Xu. “A Data-Driven Linear Optimal

Power Flow Model for Distribution Networks”. In: IEEE Transactions on Power Systems (2022)

(cit. on p. 94).

[62] Zhentong Shao, Qiaozhu Zhai, Zhihan Han, and Xiaohong Guan. “A linear AC unit commitment

formulation: An application of data-driven linear power flow model”. In: International Journal of

Electrical Power & Energy Systems 145 (2023), p. 108673 (cit. on pp. 96, 114).

[63] Yuxiao Liu, Bolun Xu, Audun Botterud, Ning Zhang, and Chongqing Kang. “Bounding regres-

sion errors in data-driven power grid steady-state models”. In: IEEE Transactions on Power Sys-

tems 36.2 (2020), pp. 1023–1033 (cit. on pp. 99, 100).

BIBLIOGRAPHY 151

[64] Yuxiao Liu, Yi Wang, Ning Zhang, Dan Lu, and Chongqing Kang. “A data-driven approach to

linearize power flow equations considering measurement noise”. In: IEEE Transactions on Smart

Grid 11.3 (2019), pp. 2576–2587 (cit. on pp. 101, 102).

[65] Yuxiao Liu, Bolun Xu, Audun Botterud, Ning Zhang, and Chongqing Kang. “Bounding regres-

sion errors in data-driven power grid steady-state models”. In: IEEE Transactions on Power Sys-

tems 36.2 (2020), pp. 1023–1033 (cit. on pp. 104, 105).

[66] Yiling Zhang, Siqian Shen, and Johanna L Mathieu. “Distributionally robust chance-constrained

optimal power flow with uncertain renewables and uncertain reserves provided by loads”. In:

IEEE Transactions on Power Systems 32.2 (2016), pp. 1378–1388 (cit. on pp. 108, 110, 112).

[67] Yiling Zhang, Siqian Shen, and Johanna L Mathieu. “Distributionally robust chance-constrained

optimal power flow with uncertain renewables and uncertain reserves provided by loads”. In:

IEEE Transactions on Power Systems 32.2 (2016), pp. 1378–1388 (cit. on p. 109).

[68] Yitong Liu, Zhengshuo Li, and Junbo Zhao. “Robust Data-Driven Linear Power Flow Model with

Probability Constrained Worst-Case Errors”. In: arXiv preprint arXiv:2112.10320 (2021) (cit. on

p. 112).

[69] Wei Wei. “Tutorials on Advanced Optimization Methods”. In: arXiv preprint arXiv:2007.13545

(2020) (cit. on p. 113).

[70] Wei Wei. “Tutorials on Advanced Optimization Methods”. In: arXiv preprint arXiv:2007.13545

(2020) (cit. on p. 114).

[71] Ray D Zimmerman and Carlos E Murillo-Sánchez. “Matpower 6.0 user’s manual”. In: Power Sys-

tems Engineering Research Center 9 (2016) (cit. on pp. 115, 118).

[72] Xingpeng Li and Kory Hedman. “Data driven linearized ac power flow model with regression

analysis”. In: arXiv preprint arXiv:1811.09727 (2018) (cit. on pp. 116, 120).

[73] Jingwei Yang, Ning Zhang, Chongqing Kang, and Qing Xia. “A state-independent linear power

flow model with accurate estimation of voltage magnitude”. In: IEEE Transactions on Power

Systems 32.5 (2016), pp. 3607–3617 (cit. on p. 117).

[74] Mengshuo Jia, Qianni Cao, Chen Shen, and Gabriela Hug. “Frequency-Control-Aware Probabilis-

tic Load Flow: An Analytical Method”. In: IEEE Transactions on Power Systems 38.6 (2023),

pp. 5170–5187 (cit. on p. 118).

	Introduction
	Background
	License and Terms of Use
	Citing Daline

	Getting Started
	System Requirements
	Installation
	Major Functionalities
	Customization Approaches
	Customizable Parameters
	Daline Examples

	Data Generating and Processing
	Data Generating (daline.generate)
	Input
	Output
	Examples
	Remarks

	Data Processing
	Check Data Format (Automatic)
	Add Data Noise (daline.noise)
	Add Data Outliers (daline.outlier)
	Filter Data Noise (daline.denoise)
	Filter Data Outliers (daline.deoutlier)
	Normalize Data (daline.normalize)

	All-in-one Command for Data Generating/Processing (daline.data)

	Model Fitting and Testing
	All-in-one Command for Model Fitting/Testing (daline.fit)
	Least Squares Family
	Ordinary Least Squares (LS)
	Ordinary Least Squares with Generalized Inverse (LS_PIN)
	Least Squares with Singular Value Decomposition (LS_SVD)
	Least Squares with Complete Orthogonal Decomposition (LS_COD)
	Least Squares with Principal Component Analysis (LS_PCA)
	Least Squares with Huber Loss Function: a Direct Solution (LS_HBLD)
	Least Squares with Huber Loss Function: an Equivalent Solution (LS_HBLE)
	Least Squares with Huber Weighting Function (LS_HBW)
	Generalized Least Squares (LS_GEN)
	Total Least Squares (LS_TOL)
	Least Squares with Clustering (LS_CLS)
	Least Squares with Lifting Dimension: Lifting the Whole bold0mu mumu xxfalsexxxx Jointly (LS_LIFX)
	Least Squares with Lifting Dimension: Lifting the Elements of bold0mu mumu xxfalsexxxx Individually (LS_LIFXi)
	Weighed Least Squares (LS_WEI)
	Recursive Least Squares (LS_REC)
	Repeated Least Squares (LS_REP)

	Partial Least Squares Regression Family
	Ordinary Partial Least Squares with SIMPLS (PLS_SIM)
	Ordinary Partial Least Squares with SIMPLS Using Rank of bold0mu mumu XXfalseXXXX (PLS_SIMRX)
	Ordinary Partial Least Squares with NIPALS (PLS_NIP)
	Partial Least Squares Bundling Known/Unknown Variables and Replacing Slack Bus's Power Injection (PLS_BDL)
	Partial Least Squares Bundling Known/Unknown Variables (PLS_SIMY2)
	Partial Least Squares Bundling Known/Unknown Variables: the Open-source Version (PLS_BDLopen)
	Recursive Partial Least Squares with NIPALS (PLS_REC)
	Recursive Partial Least Squares with NIPALS with Forgetting Factors (PLS_RECW)
	Repeated Partial Least Squares with NIPALS (PLS_REP)
	Partial Least Squares with Clustering (PLS_CLS)

	Ridge Regression Family
	Ordinary Ridge Regression (RR)
	Ordinary Ridge Regression with the Voltage-angle Coupling (RR_VCS)
	Ordinary Ridge Regression with K-plane Clustering (RR_KPC)
	Locally Weighted Ridge Regression (RR_WEI)

	Support Vector Regression Family
	Ordinary Support Vector Regression: a Direct Solution (SVR)
	Support Vector Regression with Polynomial Kernel (SVR_POL)
	Support Vector Regression with Ridge Regression (SVR_RR)
	Support Vector Regression with Chance-constrained Programming (SVR_CCP)

	Linearly Constrained Programming Family
	General Inputs
	General Tips
	Linearly Constrained Programming with Box Constraints (LCP_BOX)
	Linearly Constrained Programming without Box Constraints (LCP_BOXN)
	Linearly Constrained Programming with Jacobian Guidance Constraints (LCP_JGD)
	Linearly Constrained Programming without Jacobian Guidance Constraints (LCP_JGDN)
	Linearly Constrained Programming with Coupling Constraints (LCP_COU and LCP_COU2)
	Linearly Constrained Programming without Coupling Constraints (LCP_COUN and LCP_COUN2)

	Distributionally Robust Chance-constrained Programming Family
	Moment-based Distributionally Robust Chance-constrained Programming with bold0mu mumu XXfalseXXXX as Random Variable (DRC_XM)
	Moment-based Distributionally Robust Chance-constrained Programming with bold0mu mumu XXfalseXXXX and bold0mu mumu YYfalseYYYY as Random Variables (DRC_XYM)
	Divergence-based Distributionally Robust Chance-Constrained Programming with bold0mu mumu XXfalseXXXX and bold0mu mumu YYfalseYYYY as Random Variables (DRC_XYD)

	Physical-model-informed Family
	DCPF (DC)
	DCPF with Ordinary Least Squares (DC_LS)
	Decoupled Linearized Power Flow (DLPF)
	DLPF with a Data-driven Correction (DLPF_C)
	Power Transfer Distribution Factor (PTDF)
	First-order Taylor Approximation (TAY)

	Direct Solution Family
	Direct QR Decomposition (QR)
	Direct Left Division (LD)
	Direct Generalized Inverse (PIN)
	Direct Singular Value Decomposition (SVD)
	Direct Complete Orthogonal Decomposition (COD)
	Direct Principal Component Analysis (PCA)

	Performance Evaluation and Visualization
	Accuracy
	Visualization of Computational Efficiency
	Computational time rankings of multiple methods (daline.time)
	Computational time evolution curves of multiple methods (daline.time)

	All-in-one Command for Daline (daline.all)
	Inputs
	Outputs
	Examples

